55 resultados para Contourite


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Pliocene and Pleistocene deposits recovered at Site 976 from the northwestern Alboran Sea at the Málaga base-of-slope include five main sedimentary facies: hemipelagic, turbidite, homogeneous gravity-flow, contourite, and debris-flow facies. The thickness and vertical distribution of these facies into lithostratigraphic Units I, II, and III show that the turbidites and hemipelagic facies are the dominant associations. The Pliocene and Pleistocene depositional history has been divided into three sedimentary stages: Stage I of early Pliocene age, in which hemipelagic and low-energy turbidites were the dominant processes; Stage II of early Pleistocene/late Pliocene age, in which the dominant processes were the turbidity currents interrupted by short episodes of other gravity flows (debris-flows and homogeneous gravity-flow facies) and bottom currents; and Stage III of Pleistocene age, in which both hemipelagic and low-energy gravity-flow processes occurred. The sedimentation during these three stages was controlled mainly by sea-level changes and also by the sediment supply that caused rapid terrigenous sedimentation variations from a proximal source represented by the Fuengirola Canyon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Weddell Sea and the associated Filchner-Rønne Ice Shelf constitute key regions for global bottomwater production today. However, little is known about bottom-water production under different climate and icesheet conditions. Therefore, we studied core PS1795, which consists primarily of fine-grained siliciclastic varves that were deposited on contourite ridges in the southeastern Weddell Sea during the Last Glacial Maximum (LGM). We conducted high-resolution X-ray fluorescence (XRF) analysis and grain-size measurements with the RADIUS tool (Seelos and Sirocko, 2005, doi:10.1111/j.1365-3091.2005.00715.x) using thin sections to characterize the two seasonal components of the varves at sub-mm resolution to distinguish the seasonal components of the varves. Bright layers contain coarser grains that can mainly be identified as quartz in the medium-to-coarse silt grain size. They also contain higher amounts of Si, Zr, Ca, and Sr, as well as more ice-rafted debris (IRD). Dark layers, on the other hand, contain finer particles such as mica and clay minerals from the chlorite and illite groups. In addition, Fe, Ti, Rb, and K are elevated. Based on these findings as well as on previous analyses on neighbouring cores, we propose a model of enhanced thermohaline convection in front of a grounded ice sheet that is supported by seasonally variable coastal polynya activity during the LGM. Accordingly, katabatic (i.e. offshore blowing) winds removed sea ice from the ice edge, leading to coastal polynya formation. We suggest that glacial processes were similar to today with stronger katabatic winds and enhanced coastal polynya activity during the winter season. Under these conditions, lighter coarser-grained layers are likely glacial winter deposits, when brine rejection was increased, leading to enhanced bottom-water formation and increased sediment transport. Vice versa, darker finer-grained layers were then deposited during less windier season, mainly during summer, when coastal polynya activity was likely reduced.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sedimentary processes in the southeastern Weddell Sea are influenced by glacial-interglacial ice-shelf dynamics and the cyclonic circulation of the Weddell Gyre, which affects all water masses down to the sea floor. Significantly increased sedimentation rates occur during glacial stages, when ice sheets advance to the shelf edge and trigger gravitational sediment transport to the deep sea. Downslope transport on the Crary Fan and off Dronning Maud and Coats Land is channelized into three huge channel systems, which originate on the eastern-, the central and the western Crary Fan. They gradually turn from a northerly direction eastward until they follow a course parallel to the continental slope. All channels show strongly asymmetric cross sections with well-developed levees on their northwestern sides, forming wedge-shaped sediment bodies. They level off very gently. Levees on the southeastern sides are small, if present at all. This characteristic morphology likely results from the process of combined turbidite-contourite deposition. Strong thermohaline currents of the Weddell Gyre entrain particles from turbidity-current suspensions, which flow down the channels, and carry them westward out of the channel where they settle on a surface gently dipping away from the channel. These sediments are intercalated with overbank deposits of high-energy and high-volume turbidity currents, which preferentially flood the left of the channels (looking downchannel) as a result of Coriolis force. In the distal setting of the easternmost channel-levee complex, where thermohaline currents are directed northeastward as a result of a recirculation of water masses from the Enderby Basin, the setting and the internal structures of a wedge-shaped sediment body indicate a contourite drift rather than a channel levee. Dating of the sediments reveals that the levees in their present form started to develop with a late Miocene cooling event, which caused an expansion of the East Antarctic Ice Sheet and an invigoration of thermohaline current activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mud accumulates on continental shelves under a variety of environmental conditions and results in a diverse formation of mud depocenters (MDCs). Their three-dimensional architectures have been in the focus of several recent studies. Due to some terminological confusion concerning MDCs, the present study sets out to define eight individual MDC types in terms of surface sediment distribution and internal geometry. Under conditions of substantial sediment supply, prodeltas (distal zones off river deltas; triangular sheets), subaqueous deltas (disconnected from deltas by strong normal-to-shore currents; wedge-like clinoforms), and mud patches (scattered distribution) and mud blankets (widespread covers) are formed. Forced by hydrodynamic conditions, mud belts in the strict sense (detached from source; elongated bodies), and shallow-water contourite drifts (detached from source; growing normal to prevailing current direction; triangular clinoforms) develop. Controlled by local morphology, mud entrapments (in depressions, behind morphological steps) and mud wedges (triangular clinoforms growing in flow direction) are deposited. Shelf mud deposition took place (1) during early outer-shelf drowning (~14 ka), (2) after inner-shelf inundation to maximum flooding (9.5-6.5 ka), and (3) in sub-recent times (<2 ka). Subsequent expansion may be (1) concentric, in cases where the depocenter formed near the fluvial source, (2) uni-directional, extending along advective current transport paths, and (3) progradational, forming clinoforms that grow either parallel or normal to the bottom current direction. Classical mud belts may be initiated around defined nuclei, the remote sites of which are determined by seafloor morphology rather than the location of the source. From a stratigraphic perspective, mud depocenters coincide with sea-level highstand-related, shelf-wide condensed sections. They often show a conformable succession from transgressive to highstand systems tract stages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fine-fraction (<63 µm) grain-size analyses of 530 samples from Holes 1095A, 1095B, and 1095D allow assessment of the downhole grain-size distribution at Drift 7. A variety of data processing methods, statistical treatment, and display techniques were used to describe this data set. The downhole fine-fraction grain-size distribution documents significant variations in the average grain-size composition and its cyclic pattern, revealed in five prominent intervals: (1) between 0 and 40 meters composite depth (mcd) (0 and 1.3 Ma), (2) between 40 and 80 mcd (1.3 and 2.4 Ma), (3) between 80 and 220 mcd (2.4 and 6 Ma), (4) between 220 and 360 mcd, and (5) below 360 mcd (prior to 8.1 Ma). In an approach designed to characterize depositional processes at Drift 7, we used statistical parameters determined by the method of moments for the sortable silt fraction to distinguish groups in the grainsize data set. We found three distinct grain-size populations and used these for a tentative environmental interpretation. Population 1 is related to a process in which glacially eroded shelf material was redeposited by turbidites with an ice-rafted debris influence. Population 2 is composed of interglacial turbidites. Population 3 is connected to depositional sequence tops linked to bioturbated sections that, in turn, are influenced by contourite currents and pelagic background sedimentation.