340 resultados para Continental Drive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

On "Meteor" cruise 30 (1973) 22 piston-cores were collected off Sierra Leone from water-depths between about 5000 m (Sierra Leone Basin) and 500 m (upper continental slope) with the objective to study the sediment composition and age as well as processes of sedimentation on the continental slope in a tropical humid region. Granulometric analysis and determinations of the carbonate contents of the sediment samples were carried out, as well as qualitative and quantitative analysis of the components of the grain size fractions > 63 µm and of the planktonic and benthonic foraminifera > 160 µm. Presently, the cold Canary Current influences the composition of the planktonic foraminifera within the northwestern area of investigation (profile A), whereas the planktonic fauna of the eastern area (profile C) seems to be truly tropical. In all Quaternary sediments from the continental slope off Sierra Leone, species of Globorotalia are less abundant than in truly pelagic sediments. For that reason, the zonation of the Pleistocene sediments based on the presence or absence of Globorotalia cultrata does not always agree with the climatic changes reflected in the sediments. Concerning past climates better results can be obtained by using the changes in percentage abundances of Globigerina sp. sp. and Globigerinoides sp. sp. as indicators for cool and warm temperatures. The Tertiary sediments contain a pelagic foraminiferal assemblage. In the Holocene sediments the benthonic foraminifera do not only serve as good paleodepth indicators, but their communities are also restricted to defined water masses, which change their positions in accordance with climatic changes. Thus, Cassidulina carinata in the area of investigation is an excellent indicator for sediments deposited during times, which were cooler than today; this is true for all cores from the continental slope off Sierra Leone independent of water-depth although this species presently abounds at water-depths around 600 m. The cores from the continental rise and from the Sierra Leone Basin (M30-261, M30-146, M30-147) were deposited below the calcium carbonate compensation depth. Only small sections of the cores consist of the original carbonate-free sediments, whereas the main part of the sediment column is redeposited material, rich in foraminifera, which normally live on the upper continental slope, or even on the shelf. From these cores only M30-261 can be subdivided into biostratigraphic zones ranging from zone V to zone Y. In all cores from the middle and upper continental slope of the eastern area of investigation (profile C; KL 230, 209-204) and in cores KL 183 and KL 184 from the northwestern area (profile A) we observed an undisturbed succession of sediments from the biostratigraphic zones X (partly), Y and Z. All cores from the central area (M30-181, M30-182, M30-262 to 264) and M30-187 from the upper slope of profile A show variable hiatuses in the sedimentary record. Locally, high velocity bottom currents were probably responsible for erosion, nondeposition or minimal sedimentation rates. These currents might have been initiated partly by the somewhat exposed position of this part of the continental slope, where the shelf edge bends from a northwest towards an eastern direction, and partly by very young tectonic movements. Fracture zones with vertically displaced fault blocs are frequent at Sierra Leone continental margin. According to seismic measurements by McMaster et al. (1975) the sites of the central area are located on an uplifted fault bloc explaining the reduced sediment rates or erosion. Unlike the central area, the eastern area (profile C) is situated on a downfaulted bloc with high sediment rates. The sediments from the cores of profile B as well as the turbiditic deep-sea sediments were deposited under a higher flow regime; therefore they are coarser than the extremely fine-grained sediments of the cores from profile C. Since the sand fraction (> 63 µm) is mainly composed of foraminifera, besides pteropods and light-colored fecal pellets, the carbonate content increases with the increasing percentage of the coarse grain fraction. Higher concentrations of quartz were only observed in core sections with considerable carbonate dissolution (mainly in the X-Zone), and, in general, in all sediments from the eastern area with higher terrigenous input including larger concentration of mica. Especially during times transitional between glacials and interglacials (or interstadials) the bottom currents were intensified. The percentages of coarse fraction and carbonate increase with increasing current velocities. Calcium carbonate dissolution becomes important in water depths > 3500 m. During cooler times the lysokline is depressed. Light-colored fecal pellets were redeposited from Late Neogene sediments (M30-187, M30-181). In the area of investigation they occur in the Holocene and mainly the Pleistocene sediments of the cores from the northwestern and central area because only here Tertiary sediments have been eroded at the uppermost continental slope. In the central area there are at least two periods of non-sedimentation and/or erosion which can be confined as being (1) not older than middle Pliocene and not younger than zone V and (2) younger than zone W. The local character of the erosion is documented by the fact that a complete Late Quaternary section is present in the cores of the northwestern and eastern area, each within less than 100 km from incomplete cores from the central area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The studies described here base mainly on sedimentary material collected during the "Indian Ocean Expedition" of the German research vessel "Meteor" in the region of the Indian-Pakistan continental margin in February and March 1965. Moreover,samples from the mouth of the Indus-River were available, which were collected by the Pakistan fishing vessel "Machhera" in March 1965. Altogether, the following quantities of sedimentary material were collected: 59.73 m piston cores. 54.52 m gravity cores. 33 box grab samples. 68 bottom grab samples Component analyses of the coarse fraction were made of these samples and the sedimentary fabric was examined. Moreover, the CaCO3 and Corg contents were discussed. From these investigations the following history of sedimentation can be derived: Recent sedimentation on the shelf is mainly characterized by hydrodynamic processes and terrigenous supply of material. In the shallow water wave action and currents running parallel to the coast, imply a repeated reworking which induces a sorting of the grains and layering of the sediments as well as a lack of bioturbation. The sedimentation rate is very high here. From the coast-line down to appr. 50 m the sediment becomes progressively finer, the conditions of deposition become less turbulent. On the outer shelf the sediment is again considerably coarser. It contains many relicts of planktonic organisms and it shows traces of burrowing. Indications for redeposition are nearly missing, a considerable part of the fine fraction of the sediments is, however, whirled up and carried away. In wide areas of the outer shelf this stirring has gained such a degree that recent deposits are nearly completely missing. Here, coarse relict sands rich in ooids are exposed, which were formed in very shallow stirred water during the time when the sea reached its lowest level, i.e. at the turn of the Pleistocene to the Holocene. Below the relict sand white, very fine-grained aragonite mud was found at one location (core 228). This aragonite mud was obviously deposited in very calm water of some greater depth, possibly behind a reef barrier. Biochemic carbonate precipitation played an important part in the formation of relict sands and aragonite muds. In postglacial times the relict sands were exposed for long periods to violent wave action and to areal erosion. In the present days they are gradually covered by recent sediments proceeding from the sides. On the continental margin beyond the shelf edge the distribution of the sediments is to a considerable extent determined by the morphology of the sea bottom. The material originating from the continent and/or the shelf, is less transported by action of the water than by the force of gravity. Within the range of the uppermost part of the continental slope recent sedimentation reaches its maximum. Here the fine material is deposited which has been whirled up in the zone of the relict sands. A laminated fine-grained sediment is formed here due to the very high sedimentation rate as well as to the extremely low O2-content in the bottom water, which prevents life on the bottom of the sea and impedes thus also bioturbation. The lamination probaly reflects annual variation in deposition and can be attributed to the rhythm of the monsoon with its effects on the water and the weather conditions. In the lower part of the upper continental slope sediments are to be found which show in varying intensity, intercalations of fine material (silt) from the shelf, in large sections of the core. These fine intercalations of allochthonous material are closely related to the autochthonous normal sediment, so that a great number of small individual depositional processes can be inferred. In general the intercalations are missing in the uppermost part of the cores; in the lower part they can be met in different quantities, and they reach their maximum frequency in the upper part of the lower core section. The depositions described here were designated as turbid layer sediments, since they get their material from turbid layers, which transport components to the continental slope which have been whirled up from the shelf. Turbidites are missing in this zone. Since the whole upper continental slope shows a low oxygen-content of the bottom water the structure of the turbid layer sediments is more or less preserved. The lenticular-phacoidal fine structure does, however, not reflect annual rhythms, but sporadic individual events, as e.g. tsunamis. At the lower part of the continental slope and on the continental rise the majority of turbidites was deposited, which, during glacial times and particularly at the beginning of the post-glacial period, transported material from the zone of relict sands. The Laccadive Ridge represented a natural obstacle for the transport of suspended sediments into the deep sea. Core SIC-181 from the Arabian Basin shows some intercalations of turbidites; their material, however, does not originate from the Indian Shelf, but from the Laccadive Ridge. Within the range of the Indus Cone it is surprising that distinct turbidites are nearly completely missing; on the other hand, turbid layer sediments are to be found. The bottom of the sea is showing still a slight slope here, so that the turbidites funneled through the Canyon of the Swatch probably rush down to greater water depths. Due to the particularly large supply of suspended material by theIndus River the turbid layer sediments show farther extension than in other regions. In general the terrigenous components are concentrated on the Indus Cone. It is within the range of the lower continental slope that the only discovery of a sliding mass (core 186) has been located. It can be assumed that this was set in motion during the Holocene. During the period of time discussed here the following development of kind and intensity of the deposition of allochthonous material can be observed on the Indian-Pakistan continental margin: At the time of the lowest sea level the shelf was only very narrow, and the zone in which bottom currents were able to stir up material by oscillating motion, was considerably confined. The rivers flowed into the sea near to the edge of the shelf. For this reason the percentage of terrigenous material, quartz and mica is higher in the lower part of many cores (e.g. cores 210 and 219) than in the upper part. The transition from glacial to postglacial times caused a series of environmental changes. Among them the rise of the sea level (in the area of investigation appr. 150 m) had the most important influence on the sedimentation process. In connection with this event many river valleys became canyons, which sucked sedimentary material away from the shelf and transported it in form of turbidites into the deep sea. During the rise of the sea level a situation can be expected with a maximum area of the comparatively plane shelf being exposed to wave action. During this time the process of stirring up of sediments and formation of turbid layers will reach a maximum. Accordingly, the formation of turbidites and turbid layer sediments are most frequent at the same time. This happened in general in the older polstglacial period. The present day high water level results in a reduced supply of sediments into the canyons. The stirring up of sediments from the shelf by wave action is restricted to the finest material. The missing of shelf material in the uppermost core sections can thus be explained. The laminated muds reflect these calm sedimentation conditions as well. In the southwestern part of the area of investigation fine volcanic glass was blown in during the Pleistocene, probably from the southeast. It has thus become possible to correlate the cores 181, 182, 202. Eolian dust from the Indian subcontinent represents probably an important component of the deep sea sediments. The chemism of the bottom as well as of the pore water has a considerable influence on the development of the sediments. Of particular importance in this connection is a layer with a minimum content of oxygen in the sea water (200-1500 m), which today touches the upper part of the continental slope. Above and beyond this oxygen minimum layer somewhat higher O2-values are to be observed at the sea bottom. During the Pleistocene the oxygen minimum layer has obviously been locatedin greater depth as is indicated by the facies of laminated mud occuring in the lower part of core 219. The type of bioturbation is mainly determined by the chemism. Moreover, the chemism is responsible for a considerable selective dissolution, either complete or partial, of the sedimentary components. Within the range of the oxygen minimum layer an alkaline milieu is developed at the bottom. This causes a complete or partial dissolution of the siliceous organisms. Here, bioturbation is in general completely missing; sometimes small pyrite-filled burrowing racks are found. In the areas rich in O2 high pH-values result in a partial dissolution of the calcareous shells. Large, non-pyritized burrowing tracks characterize the type of bioturbation in this environment. A study of the "lebensspuren" in the cores supports the assumption that, particularly within the region of the Laccadive Basin, the oxygen content in the bottom sediments was lower than during the Holocene. This may be attributed to a high sedimentation rate and to a lower O2-content of the bottom water. The composition of the allochthonous sedimentary components, detritus and/or volcanic glass may locally change the chemism to a considerable extent for a certain time; under such special circumstances the type of bioturbation and the state of preservation of the components may be different from those of the normal sediment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hexachlorocyclohexanes (HCHs) are ubiquitous organic pollutants derived from pesticide application. They are subject to long-range transport, persistent in the environment, and capable of accumulation in biota. Shipboard measurements of HCH isomers (a-, b- and g-HCH) in surface seawater and boundary layer atmospheric samples were conducted in the Atlantic and the Southern Ocean in October to December of 2008. SumHCHs concentrations (the sum of a-, g- and b-HCH) in the lower atmosphere ranged from 12 to 37 pg/m**3 (mean: 27 ± 11 pg/m**3) in the Northern Hemisphere (NH), and from 1.5 to 4.0 pg/m**3 (mean: 2.8 ± 1.1 pg/m**3) in the Southern Hemisphere (SH), respectively. Water concentrations were: a-HCH 0.33-47 pg/l, g-HCH 0.02-33 pg/l and b-HCH 0.11-9.5 pg/l. Dissolved HCH concentrations decreased from the North Atlantic to the Southern Ocean, indicating historical use of HCHs in the NH. Spatial distribution showed increasing concentrations from the equator towards North and South latitudes illustrating the concept of cold trapping in high latitudes and less interhemispheric mixing process. In comparison to concentrations measured in 1987-1999/2000, gaseous HCHs were slightly lower, while dissolved HCHs decreased by factor of 2-3 orders of magnitude. Air-water exchange gradients suggested net deposition for a-HCH (mean: 3800 pg/m**2/day) and g-HCH (mean: 2000 pg/m**2/day), whereas b-HCH varied between equilibrium (volatilization: <0-12 pg/m**2/day) and net deposition (range: 6-690 pg/m**2/day). Climate change may significantly accelerate the release of "old" HCHs from continental storage (e.g. soil, vegetation and high mountains) and drive long-range transport from sources to deposition in the open oceans. Biological productivities may interfere with the air-water exchange process as well. Consequently, further investigation is necessary to elucidate the long term trends and the biogeochemical turnover of HCHs in the oceanic environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we present a late Miocene - early Pliocene record of sixty-four zones with prominent losses in the magnetic susceptibility signal, taken on a sediment drift (ODP Site 1095) on the Pacific continental rise of the West Antarctic Peninsula. The zones are comparable in shape and magnitude and occur commonly at glacial-to-interglacial transitions. High resolution records of organic matter, magnetic susceptibility and clay mineral composition from early Pliocene intervals demonstrate that neither dilution effects nor provenance changes of the sediments have caused the magnetic susceptibility losses. Instead, reductive dissolution of magnetite under suboxic conditions seems to be the most likely explanation. We propose that during the deglaciation exceptionally high organic fluxes in combination with weak bottom water currents and prominent sediment draping diatom ooze layers produced temporary suboxic conditions in the uppermost sediments. It is remarkable that synsedimentary suboxic conditions can be observed in one of the best ventilated open ocean regions of the World.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We tested the ability of a small dynamic penetrometer, Nimrod, to infer geotechnical properties of sediment mixtures in the inner shelf. The penetrometer is light and easy to operate, and its operation by scuba divers ensures a greater degree of precision than ship-based penetrometer deployments. We have studied selected positions along a sorted bedform (~ 100 m wide) on the continental shelf off the Coromandel Peninsula close to Tairua, North Island of New Zealand, and additionally took sediment samples at the exact positions of penetrometer impact, also by scuba divers. The derived dynamic penetrometer signatures (i) measured deceleration of the probe and estimated quasi-static bearing capacity as a measure of sediment strength, (ii) reflected changes in grain-size distribution ranging from very fine to very coarse sands, and (iii) revealed the uppermost seafloor stratification (top layer 2-6 cm) potentially being an indicator for sediment dynamics. In this manner, the device proved to be suitable for spatially fine-scaled surveys using divers' support and might deliver complementary information about sediment dynamics, in this case sorted-bedform maintenance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report iodine and bromine concentrations in a total of 256 pore water samples collected from all nine sites of Ocean Drilling Program Leg 204, Hydrate Ridge. In a subset of these samples, we also determined iodine ages in the fluids using the cosmogenic isotope 129I (T1/2 = 15.7 Ma). The presence of this cosmogenic isotope, combined with the strong association of iodine with methane, allows the identification of the organic source material responsible for iodine and methane in gas hydrates. In all cores, iodine concentrations were found to increase strongly with depth from values close to that of seawater (0.0004 mM) to concentrations >0.5 mM. Several of the cores taken from the northwest flank of the southern summit show a pronounced maximum in iodine concentrations at depths between 100 and 150 meters below seafloor in the layer just above the bottom-simulating reflector. This maximum is especially visible at Site 1245, where concentrations reach values as high as 2.3 mM, but maxima are absent in the cores taken from the slope basin sites (Sites 1251 and 1252). Bromine concentrations follow similar trends, but enrichment factors for Br are only 4-8 times that of seawater (i.e., considerably lower than those for iodine). Iodine concentrations are sufficient to allow isotope determinations by accelerator mass spectrometry in individual pore water samples collected onboard (~5 mL). We report 129I/I ratios in a few samples from each core and a more complete profile for one flank site (Site 1245). All 129I/I ratios are below the marine input ratio (Ri = 1500x10**-15). The lowest values found at most sites are between 150 and 250x10**-15, which correspond to minimum ages between 40 and 55 Ma, respectively. These ages rule out derivation of most of the iodine (and, by association, of methane) from the sediments hosting the gas hydrates or from currently subducting sediments. The iodine maximum at Site 1245 is accompanied by an increase in 129I/I ratios, suggesting the presence of an additional source with an age younger than 10 Ma; there is indication that younger sources also contribute at other sites, but data coverage is not yet sufficient to allow a definitive identification of sources there. Likely sources for the older component are formations of early Eocene age close to the backstop in the overriding wedge, whereas the younger sources might be found in recent sediments underlying the current locations of the gas hydrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the spatial distribution of isotopic compositions of the two planktic foraminifera species Globigerina bulloides and Neogloboquadrina pachyderma (dex.), and the faunal assemblages of planktic foraminifera in 91 surface sediment samples along the Chilean continental slope between 23°S and 44°S. Both d13C and d18O data of N. pachyderma (dex.) show little variability in the study area. North of 39°S, the isotopic values of N. pachyderma (dex.) are heavier than those of G. bulloides, whereas south of 39°S, this relation inverses. This is indicative for a change from a well-mixed, deep thermocline caused by coastal upwelling north of 39°S to well-stratified water masses in a non-upwelling environment south of 39°S. In addition, the faunal composition of planktic foraminifera marks this change by transition from an upwelling assemblage north of 39°S to a high-nutrient-non-upwelling assemblage south of 39°S, which is characterized by decreased contributions of upwelling indicators such as G. bulloides, N. pachyderma (sin.), and Globigerinita glutinata. In general, we can conclude that food and light rather than temperature are the primary control of the planktic foraminiferal assemblage between 23°S and 44°S off Chile. Our data point to higher marine productivity at upwelling centers north of 25°S and at 30-33°S. South of 39°S, significant supply of nutrients by fluvial input most likely boosts the productivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of a complex study of the sedimentary cover (continuous seismic profiling and diatom analysis) in the northeastern Sea of Japan including the Bogorov Rise an adjacent part of the Japan Basin and the continental slope, are presented. Two varied-age complexes were distinguished in the sedimentary cover of the continental slope of Primorye: Middle Miocene and Late Miocene - Pleistocene. These complexes formed in a stable tectonic setting with no significant vertical movements. A depression in the acoustic basement is located along the continental slope and it is divided from the Japan Basin by a group of volcanic structures, the most uplifted part of which forms the Bogorov Rise. The depression probably formed before Middle Miocene. In Middle Miocene the Bogorov Rise was already at depths close to modern ones. In the sedimentary cover near the Bogorov Rise buried zones were found. Probably they were channels for gas transportation in pre-Pleistocene. Deformations of sediments that occurred in the beginning of Pleistocene are established in the basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tropical regions have been reported to play a key role in climate dynamics. To date, however, there are uncertainties in the timing and the amplitude of the response of tropical ecosystems to millennial-scale climate change. We present evidence of an asynchrony between terrestrial and marine signals of climate change during Heinrich events preserved in marine sediment cores from the Brazilian continental margin. The inferred time lag of about 1000 to 2000 years is much larger than the ecological response to recent climate change and appears to be related to the nature of hydrological changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used piston cores recovered in the western Bering Sea to reconstruct millennial-scale changes in marine productivity and terrigenous matter supply over the past ~180 kyr. Based on a geochemical multi-proxy approach, our results indicate closely interacting processes controlling marine productivity and terrigenous matter supply comparable to the situation in the Okhotsk Sea. Overall, terrigenous inputs were high, whereas export production was low. Minor increases in marine productivity occurred during intervals of Marine Isotope Stage 5 and interstadials, but pronounced maxima were recorded during interglacials and Termination I. The terrigenous material is suggested to be derived from continental sources on the eastern Bering Sea shelf and to be subsequently transported via sea ice, which is likely to drive changes in surface productivity, terrigenous inputs, and upper-ocean stratification. From our results we propose glacial, deglacial, and interglacial scenarios for environmental change in the Bering Sea. These changes seem to be primarily controlled by insolation and sea-level forcing which affect the strength of atmospheric pressure systems and sea-ice growth. The opening history of the Bering Strait is considered to have had an additional impact. High-resolution core logging data (color b*, XRF scans) strongly correspond to the Dansgaard-Oeschger climate variability registered in the NGRIP ice core and support an atmospheric coupling mechanism of Northern Hemisphere climates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During Leg 112 off Peru, volcanic material was recorded from middle Eocene to Holocene time. The petrographical and chemical composition of tephra is consistent with an origin from the Andean volcanic arc. The amount and thickness of ash layers provide valuable evidence for explosive volcanic episodicity. The first indication of volcanism was found in mid-Eocene sediments. Three volcanic pulses date from Miocene time. Two intense episodes took place in upper Pliocene and from Pleistocene to Holocene time. Pliocene-Pleistocene tephra are restricted to the southern upper-slope and shelf sites, indicating a removal of the volcanic arc and the extinction of the northern Peru volcanoes. The Cenozoic tectonic phases of the Andean margin may be correlated with the Leg 112 volcanic records. The explosive supply of evolved magmatic products succeeded the Incaic and Quechua tectonic phases. Acidic glasses are related to both andesitic and shoshonitic series. The calc-alkaline factor (CAF) of these glasses exhibited moderate magmatic variations during middle and late Miocene time. A dramatic change occurred during the Pliocene-Pleistocene, reflected in a strong CAF increase and the appearance of potassium-rich evolved shoshonitic glasses. This took place when the Nazca Ridge subduction began. This change in the magma genesis and/or differentiation conditions is probably related to thickening of the upper continental plate and to a new configuration of the Benioff Zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Indo-Pakistan Continental Margin represents an extreme habitat for benthic foraminifera since (1) high fluxes of organic matter offer a high food supply, (2) an intensified oxygen minimum Zone (OMZ) develops from the base of the euphotic Zone to water depths over 1000 m and (3) the monsoon causes seasonal oscillations within the biogeochemical cycle. At three stations from the uppermost (233 m), the central (658 m) and the deeper part (902 m) of the OMZ, living benthic foraminiferal assemblages were analyzed within the uppermost 10 cm of the sediment column. The ecologic structure of foraminiferal faunas is characterized by high abundances at the sediment surface and a rapid decrease within the uppermost 2 cm of the sediment column. Despite dysoxic to suboxic bottom-water conditions, stained benthic foraminifera occurred in all cores down to the base of the sampled interval. High surface abundances, a high dominance by few endobenthic calcareous taxa and a low diversity, which may result from specific physiological adaptations to almost anoxic conditions and the absence of predators, are recognized in the central part of the OMZ. The upper and lower margins of the OMZ are characterized by higher diversities and lower abundances. The shallowest part of the OMZ is dominated by calcareous foraminifera, whereas agglutinated species are the most common taxa in the deeper part. Comparisons with previous studies show that benthic foraminiferal assemblages, that are influenced by seasonal oscillations controlling food supply and/or the availability of oxygen, show variations in faunal density and species composition. Since there is strong evidence that oxygen is not a limiting factor for some taxa, it seems more likely that the distribution pattern of benthic foraminifera is preferentially controlled by trophic conditions.