120 resultados para Co2 Capture And Sequestration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanisms responsive to hypercapnia (elevated CO2 concentrations) and shaping branchial energy turnover were investigated in isolated perfused gills of two Antarctic Notothenioids (Gobionotothen gibberifrons, Notothenia coriiceps). Branchial oxygen consumption was measured under normo- versus hypercapnic conditions (10,000 ppm CO2) at high extracellular pH values. The fractional costs of ion regulation, protein and RNA synthesis in the energy budgets were determined using specific inhibitors. Overall gill energy turnover was maintained under pH compensated hypercapnia in both Antarctic species as well as in a temperate zoarcid (Zoarces viviparus). However, fractional energy consumption by the examined processes rose drastically in G. gibberifrons (100-180%), and to a lesser extent in N. coriiceps gills (7-56%). In conclusion, high CO2 concentrations under conditions of compensated acidosis induce cost increments in epithelial processes, however, at maintained overall rates of branchial energy turnover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We estimate tropical Atlantic upper ocean temperatures using oxygen isotope and Mg/Ca ratios in well-preserved planktonic foraminifera extracted from Albian through Santonian black shales recovered during Ocean Drilling Program Leg 207 (North Atlantic Demerara Rise). On the basis of a range of plausible assumptions regarding seawater composition at the time the data support temperatures between 33° and 42°C. In our low-resolution data set spanning ~84-100 Ma a local temperature maximum occurs in the late Turonian, and a possible minimum occurs in the mid to early late Cenomanian. The relation between single species foraminiferal d18O and Mg/Ca suggests that the ratio of magnesium to calcium in the Turonian-Coniacian ocean may have been lower than in the Albian-Cenomanian ocean, perhaps coincident with an ocean 87Sr/86Sr minimum. The carbon isotopic compositions of distinct marine algal biomarkers were measured in the same sediment samples. The d13C values of phytane, combined with foraminiferal d13C and inferred temperatures, were used to estimate atmospheric carbon dioxide concentrations through this interval. Estimates of atmospheric CO2 concentrations range between 600 and 2400 ppmv. Within the uncertainty in the various proxies, there is only a weak overall correspondence between higher (lower) tropical temperatures and more (less) atmospheric CO2. The GENESIS climate model underpredicts tropical Atlantic temperatures inferred from ODP Leg 207 foraminiferal d18O and Mg/Ca when we specify approximate CO2 concentrations estimated from the biomarker isotopes in the same samples. Possible errors in the temperature and CO2 estimates and possible deficiencies in the model are discussed. The potential for and effects of substantially higher atmospheric methane during Cretaceous anoxic events, perhaps derived from high fluxes from the oxygen minimum zone, are considered in light of recent work that shows a quadratic relation between increased methane flux and atmospheric CH4 concentrations. With 50 ppm CH4, GENESIS sea surface temperatures approximate the minimum upper ocean temperatures inferred from proxy data when CO2 concentrations specified to the model are near those inferred using the phytane d13C proxy. However, atmospheric CO2 concentrations of 3500 ppm or more are still required in the model in order to reproduce inferred maximum temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies of fecal pellet flux show that a large percentage of pellets produced in the upper ocean is degraded within the surface waters. It is therefore important to investigate these degradation mechanisms to understand the role of fecal pellets in the oceanic carbon cycle. Degradation of pellets is mainly thought to be caused by coprophagy (ingestion of fecal pellets) by copepods, and especially by the ubiquitous copepods Oithona spp. We examined fecal pellet ingestion rate and feeding behavior of O. similis and 2 other dominant copepod species from the North Sea (Calanus helgolandicus and Pseudocalanus elongatus). All investigations were done with fecal pellets as the sole food source and with fecal pellets offered together with an alternative suitable food source. The ingestion of fecal pellets by all 3 copepod species was highest when offered together with an alternative food source. No feeding behavior was determined for O. similis due to the lack of pellet capture in those experiments. Fecal pellets offered together with an alternative food source increased the filtration activity by C. helgolandicus and P. elongatus and thereby the number of pellets caught in their feeding current. However, most pellets were rejected immediately after capture and were often fragmented during rejection. Actual ingestion of captured pellets was rare (<37% for C. helgolandicus and <24% for P. elongatus), and only small pellet fragments were ingested unintentionally along with alternative food. We therefore suggest coprorhexy (fragmentation of pellets) to be the main effect of copepods on the vertical flux of fecal pellets. Coprorhexy turns the pellets into smaller, slower-sinking particles that can then be degraded by other organisms such as bacteria and protozooplankton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microalgae CO2 sequestering facilities might become an industrial reality if microalgae biomass could be produced at cost below $500.00 t-1. We develop a model for estimation of total production costs of microalgae as a function of known production-specific expenses, and incorporate into the model the effects of uncontrollable factors which affect known production-specific expenses. Random fluctuations were intentionally incorporated into the model, consequently into generated cost/technology scenarios, because each and every logically interconnected equipment/operation that is used in design/construction/operation/maintenance of a production process is inevitably subject to random cost/price fluctuations which can neither be eliminated nor a priori controlled. A total of 152 costs/technology scenarios were evaluated to find forty four scenarios in which Predicted Total Production Costs of Microalgae (PTPCM) was in the range $200 to $500 t-1 ha-1 y-1. An additional 24 scenarios were found with PTCPM in the range of $102 to $200 t-1 ha-1 y-1. These findings suggest that microalgae CO2 sequestering and the production of commercial compounds from microalgal biomass can be economically viable venture even today when microalgae production technology is still far from its optimum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the impacts of predicted ocean acidification and future warming on the quantity and nutritional quality of a natural phytoplankton autumn bloom in a mesocosm experiment. Since the effects of CO2-enrichment and temperature have usually been studied independently, we were also interested in the interactive effects of both aspects of climate change. Therefore, we used a factorial design with two temperature and two acidification levels in a mesocosm experiment with a Baltic Sea phytoplankton community. Our results show a significant time-dependent influence of warming on phytoplankton carbon, chlorophyll a as well as POC. Phytoplankton carbon for instance decreased by more than a half with increasing temperature at bloom time. Additionally, elemental carbon to phosphorus ratios (C:P) increased significantly by approximately 5-8 % under warming. Impacts of CO2 or synergetic effects of warming and acidification could not be detected. We suggest that temperature-induced stronger grazing pressure was responsible for the significant decline in phytoplankton biomass. Our results suggest that biological effects of warming on Baltic Sea phytoplankton are considerable and will likely have fundamental consequences for the trophic transfer in the pelagic food-web.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determination of when and where animals feed and how much they consume is fundamental to understand their ecology and role in ecosystems. However, the lack of reliable data on feeding habits of wild animals, and particularly in marine endotherms, attests to the difficulty in doing this. A promising recent development proposes using a Hall sensor-magnet System - the inter-mandibular angle sensor (IMASEN) attached to animals' jaws to elucidate feeding events. We conducted trials on captive pinnipeds by feeding IMASEN-equipped animals with prey to examine the utility of this system. Most feeding events were clearly distinguishable from other jaw movements; only small prey items might not be resolved adequately. Based on the results of this study we examined feeding events from free-ranging Weddell seals fitted with IMASENs and dead-reckoners during December 2003 at Drescher Inlet (Riiser Larsen Ice Shelf, eastern Weddell Sea coast), and present data on prey capture and ingestion in relation to the three-dimensionalmovement patterns of the seals. A total of 19 Weddell seals were immobilised by using a combination of ketamine, xylazine, and diazepam. Eight seals were drugged once, six two times, and two and three were drugged three and four times each, coming to a total of 38 immobilisation procedures. Narcoses were terminated with yohimbine (doi:10.1594/PANGAEA.438931).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential effects of elevated CO2 level and reduced carbonate saturation state in marine environment on fishes and other non-calcified organisms are still poorly known. In present study, we investigated the effects of ocean acidification on embryogenesis and organogenesis of newly hatched larvae of marine medaka (Oryzias melastigma) after 21 d exposure of eggs to different artificially acidified seawater (pH 7.6 and 7.2, respectively), and compared with those in control group (pH 8.2). Results showed that CO2-driven seawater acidification (pH 7.6 and 7.2) had no detectable effect on hatching time, hatching rate, and heart rate of embryos. However, the deformity rate of larvae in pH 7.2 treatment was significantly higher than that in control treatment. The left and right sagitta areas did not differ significantly from each other in each treatment. However, the mean sagitta area of larvae in pH 7.6 treatment was significantly smaller than that in the control (p = 0.024). These results suggest that although marine medaka might be more tolerant of elevated CO2 than some other fishes, the effect of elevated CO2 level on the calcification of otolith is likely to be the most susceptibly physiological process of pH regulation in early life stage of marine medaka.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variability in pH is a common occurrence in many aquatic environments, due to physical, chemical and biological processes. In coastal waters, lagoons, estuaries and inland waters, pH can change very rapidly (within seconds or hours) in addition to daily and seasonal changes. At the same time, progressive ocean acidification caused by anthropogenic CO2 emissions is superimposed on these spatial and temporal pH changes. Photosynthetic organisms are therefore unavoidably subject to significant pH variations at the cell surface. Whether this will affect their response to long-term ocean acidification is still unknown, nor is it known whether the short-term sensitivity to pH change is affected by the pCO2 to which the cells are acclimated. We posed the latter open question as our experimental hypothesis: Does acclimation to seawater acidification affect the response of phytoplankton to acute pH variations? The diatom Skeletonema costatum, commonly found in coastal and estuarine waters where short-term acute changes in pH frequently occur, was selected to test the hypothesis. Diatoms were grown at both 390 (pH 8.2, low CO2; LC) and 1000 (pH 7.9, high CO2; HC) µatm CO2 for at least 20 generations, and photosynthetic responses to short-term and acute changes in pH (between 8.2 and 7.6) were investigated. The effective quantum yield of LC-grown cells decreased by ca. 70% only when exposed to pH 7.6; this was not observed when exposed to pH 7.9 or 8.2. HC-grown cells did not show significant responses in any pH treatment. Non-photochemical quenching showed opposite trends. In general, our results indicate that while LC-grown cells are rather sensitive to acidification, HC-grown cells are relatively unresponsive in terms of photochemical performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we report 420 kyr long records of sediment geochemical and color variations from the southwestern Iberian Margin. We synchronized the Iberian Margin sediment record to Antarctic ice cores and speleothem records on millennial time scales and investigated the phase responses relative to orbital forcing of multiple proxy records available from these cores. Iberian Margin sediments contain strong precession power. Sediment "redness" (a* and 570-560 nm) and the ratio of long-chain alcohols to n-alkanes (C26OH/(C26OH + C29)) are highly coherent and in-phase with precession. Redder layers and more oxidizing conditions (low alcohol ratio) occur near precession minima (summer insolation maxima). We suggest these proxies respond rapidly to low-latitude insolation forcing by wind-driven processes (e.g., dust transport, upwelling, precipitation). Most Iberian Margin sediment parameters lag obliquity maxima by 7-8 ka, indicating a consistent linear response to insolation forcing at obliquity frequencies driven mainly by high-latitude processes. Although the lengths of the time series are short (420 ka) for detecting 100 kyr eccentricity cycles, the phase relationships support those obtained by Shackleton []. Antarctic temperature and the Iberian Margin alcohol ratios (C26OH/(C26OH + C29)) lead eccentricity maxima by 6 kyr, with lower ratios (increased oxygenation) occurring at eccentricity maxima. CO2, CH4, and Iberian SST are nearly in phase with eccentricity, and minimum ice volume (as inferred from Pacific d18Oseawater) lags eccentricity maxima by 10 kyr. The phase relationships derived in this study continue to support a potential role of the Earth's carbon cycle in contributing to the 100 kyr cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Partial pressure of CO2 (pCO2) and iron availability in seawater show corresponding changes due to biological and anthropogenic activities. The simultaneous change in these factors precludes an understanding of their independent effects on the ecophysiology of phytoplankton. In addition, there is a lack of data regarding the interactive effects of these factors on phytoplankton cellular stoichiometry, which is a key driving factor for the biogeochemical cycling of oceanic nutrients. Here, we investigated the effects of pCO2 and iron availability on the elemental composition (C, N, P, and Si) of the diatom Pseudo-nitzschia pseudodelicatissima (Hasle) Hasle by dilute batch cultures under 4 pCO2 (~200, ~380, ~600, and ~800 µatm) and five dissolved inorganic iron (Fe'; ~5, ~10, ~20, ~50, and ~100 pmol /L) conditions. Our experimental procedure successfully overcame the problems associated with simultaneous changes in pCO2 and Fe' by independently manipulating carbonate chemistry and iron speciation, which allowed us to evaluate the individual effects of pCO2 and iron availability. We found that the C:N ratio decreased significantly only with an increase in Fe', whereas the C:P ratio increased significantly only with an increase in pCO2. Both Si:C and Si:N ratios decreased with increasing pCO2 and Fe'. Our results indicate that changes in pCO2 and iron availability could influence the biogeochemical cycling of nutrients in future oceans with high- CO2 levels, and, similarly, during the time course of phytoplankton blooms. Moreover, pCO2 and iron availability may also have affected oceanic nutrient biogeochemistry in the past, as these conditions have changed markedly over the Earth's history.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the potential impact of ocean acidification on ecosystems such as coral reefs, surprisingly, there is very limited field data on the relationships between calcification and seawater carbonate chemistry. In this study, contemporaneous in situ datasets of seawater carbonate chemistry and calcification rates from the high-latitude coral reef of Bermuda over annual timescales provide a framework for investigating the present and future potential impact of rising carbon dioxide (CO2) levels and ocean acidification on coral reef ecosystems in their natural environment. A strong correlation was found between the in situ rates of calcification for the major framework building coral species Diploria labyrinthiformis and the seasonal variability of [CO32-] and aragonite saturation state omega aragonite, rather than other environmental factors such as light and temperature. These field observations provide sufficient data to hypothesize that there is a seasonal "Carbonate Chemistry Coral Reef Ecosystem Feedback" (CREF hypothesis) between the primary components of the reef ecosystem (i.e., scleractinian hard corals and macroalgae) and seawater carbonate chemistry. In early summer, strong net autotrophy from benthic components of the reef system enhance [CO32-] and omega aragonite conditions, and rates of coral calcification due to the photosynthetic uptake of CO2. In late summer, rates of coral calcification are suppressed by release of CO2 from reef metabolism during a period of strong net heterotrophy. It is likely that this seasonal CREF mechanism is present in other tropical reefs although attenuated compared to high-latitude reefs such as Bermuda. Due to lower annual mean surface seawater [CO32-] and omega aragonite in Bermuda compared to tropical regions, we anticipate that Bermuda corals will experience seasonal periods of zero net calcification within the next decade at [CO32-] and omega aragonite thresholds of ~184 micro moles kg-1 and 2.65. However, net autotrophy of the reef during winter and spring (as part of the CREF hypothesis) may delay the onset of zero NEC or decalcification going forward by enhancing [CO32-] and omega aragonite. The Bermuda coral reef is one of the first responders to the negative impacts of ocean acidification, and we estimate that calcification rates for D. labyrinthiformis have declined by >50% compared to pre-industrial times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explore the impact of a latitudinal shift in the westerly wind belt over the Southern Ocean on the Atlantic meridional overturning circulation (AMOC) and on the carbon cycle for Last Glacial Maximum background conditions using a state-of-the-art ocean general circulation model. We find that a southward (northward) shift in the westerly winds leads to an intensification (weakening) of no more than 10% of the AMOC. This response of the ocean physics to shifting winds agrees with other studies starting from preindustrial background climate, but the responsible processes are different. In our setup changes in AMOC seemed to be more pulled by upwelling in the south than pushed by downwelling in the north, opposite to what previous studies with different background climate are suggesting. The net effects of the changes in ocean circulation lead to a rise in atmospheric pCO2 of less than 10 atm for both northward and southward shift in the winds. For northward shifted winds the zone of upwelling of carbon- and nutrient-rich waters in the Southern Ocean is expanded, leading to more CO2 outgassing to the atmosphere but also to an enhanced biological pump in the subpolar region. For southward shifted winds the upwelling region contracts around Antarctica, leading to less nutrient export northward and thus a weakening of the biological pump. These model results do not support the idea that shifts in the westerly wind belt play a dominant role in coupling atmospheric CO2 rise and Antarctic temperature during deglaciation suggested by the ice core data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to their aragonitic shell, thecosome pteropods may be particularly vulnerable to ocean acidification driven by anthropogenic CO2 emissions. This applies specifically to species inhabiting Arctic surface waters that are projected to become temporarily and locally undersaturated with respect to aragonite as early as 2016. This study investigated the effects of rising partial pressure of CO2 (pCO2) and elevated temperature on pre-winter juveniles of the polar pteropod Limacina helicina. After a 29 day experiment in September/October 2009 at three different temperatures and under pCO2 scenarios projected for this century, mortality, shell degradation, shell diameter and shell increment were investigated. Temperature and pCO2 had a significant effect on mortality, but temperature was the overriding factor. Shell diameter, shell increment and shell degradation were significantly impacted by pCO2 but not by temperature. Mortality was 46% higher at 8 °C than at in situ temperature (3 °C), and 14% higher at 1100 ?atm than at 230 ?atm. Shell diameter and increment were reduced by 10 and 12% at 1100 ?atm and 230 ?atm, respectively, and shell degradation was 41% higher at elevated compared to ambient pCO2. We conclude that pre-winter juveniles will be negatively affected by both rising temperature and pCO2 which may result in a possible decline in abundance of the overwintering population, the basis for next year's reproduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estuarine organisms are exposed to periodic strong fluctuations in seawater pH driven by biological carbon dioxide (CO2) production, which may in the future be further exacerbated by the ocean acidification associated with the global rise in CO2. Calcium carbonate-producing marine species such as mollusks are expected to be vulnerable to acidification of estuarine waters, since elevated CO2 concentration and lower pH lead to a decrease in the degree of saturation of water with respect to calcium carbonate, potentially affecting biomineralization. Our study demonstrates that the increase in CO2 partial pressure (pCO2) in seawater and associated decrease in pH within the environmentally relevant range for estuaries have negative effects on physiology, rates of shell deposition and mechanical properties of the shells of eastern oysters Crassostrea virginica (Gmelin). High CO2 levels (pH ~7.5, pCO2 ~3500 µatm) caused significant increases in juvenile mortality rates and inhibited both shell and soft-body growth compared to the control conditions (pH ~8.2, pCO2 ~380 µatm). Furthermore, elevated CO2 concentrations resulted in higher standard metabolic rates in oyster juveniles, likely due to the higher energy cost of homeostasis. The high CO2 conditions also led to changes in the ultrastructure and mechanical properties of shells, including increased thickness of the calcite laths within the hypostracum and reduced hardness and fracture toughness of the shells, indicating that elevated CO2 levels have negative effects on the biomineralization process. These data strongly suggest that the rise in CO2 can impact physiology and biomineralization in marine calcifiers such as eastern oysters, threatening their survival and potentially leading to profound ecological and economic impacts in estuarine ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of nutrients and pCO2 on zooxanthellate and azooxanthellate colonies of the temperate scleractinian coral Astrangia poculata (Ellis and Solander, 1786) were investigated at two different temperatures (16 °C and 24 °C). Corals exposed to elevated pCO2 tended to have lower relative calcification rates, as estimated from changes in buoyant weights. Experimental nutrient enrichments had no significant effect nor did there appear to be any interaction between pCO2 and nutrients. Elevated pCO2 appeared to have a similar effect on coral calcification whether zooxanthellae were present or absent at 16 °C. However, at 24 °C, the interpretation of the results is complicated by a significant interaction between gender and pCO2 for spawning corals. At 16 °C, gamete release was not observed, and no gender differences in calcification rates were observed - female and male corals showed similar reductions in calcification rates in response to elevated CO2 (15% and 19% respectively). Corals grown at 24 °C spawned repeatedly and male and female corals exhibited two different growth rate patterns - female corals grown at 24 °C and exposed to CO2 had calcification rates 39% lower than females grown at ambient CO2, while males showed a non-significant decline of 5% under elevated CO2. The increased sensitivity of females to elevated pCO2 may reflect a greater investment of energy in reproduction (egg production) relative to males (sperm production). These results suggest that both gender and spawning are important factors in determining the sensitivity of corals to ocean acidification, and considering these factors in future research may be critical to predicting how the population structures of marine calcifiers will change in response to ocean acidification.