984 resultados para Chemical Sediments
Resumo:
The solution rate of biogenic opal in near-surface sediments in the Central Equatorial Pacific is three to eight orders of magnitude lower than similar acid-cleaned samples. Iron, magnesium and calcium aluminosilicates may be the minerals which are forming on the surface of the opal and reducing its solution rate. The scale height of the system studied suggests that diffusive and not advective processes are primarily responsible for the removal of dissolved silica in sediments. Solution budget calculations for this area suggest that 90-99 per cent of the biogenic opal produced in surface waters dissolves before reaching the sediment-water interface; an additional amount dissolves within the sediment and diffuses into bottom waters leaving 0.05-0.15 per cent of the original amount of opal produced by organisms in the sedimentary record. The relative solution potential of the upper 1000 m of the water column varies by more than an order of magnitude from the Antarctic to Equator and may have a pronounced effect on the accumulation rate of biogenic opal in underlying sediments.
Resumo:
Subducted sediments play an important role in arc magmatism and crust-mantle recycling. Models of continental growth, continental composition, convergent margin magmatism and mantle heterogeneity all require a better understanding of the mass and chemical fluxes associated with subducting sediments. We have evaluated subducting sediments on a global basis in order to better define their chemical systematics and to determine both regional and global average compositions. We then use these compositions to assess the importance of sediments to arc volcanism and crust-mantle recycling, and to re-evaluate the chemical composition of the continental crust. The large variations in the chemical composition of marine sediments are for the most part linked to the main lithological constituents. The alkali elements (K, Rb and Cs) and high field strength elements (Ti, Nb, Hf, Zr) are closely linked to the detrital phase in marine sediments; Th is largely detrital but may be enriched in the hydrogenous Fe-Mn component of sediments; REE patterns are largely continental, but abundances are closely linked to fish debris phosphate; U is mostly detrital, but also dependent on the supply and burial rate of organic matter; Ba is linked to both biogenic barite and hydrothermal components; Sr is linked to carbonate phases. Thus, the important geochemical tracers follow the lithology of the sediments. Sediment lithologies are controlled in turn by a small number of factors: proximity of detrital sources (volcanic and continental); biological productivity and preservation of carbonate and opal; and sedimentation rate. Because of the link with lithology and the wealth of lithological data routinely collected for ODP and DSDP drill cores, bulk geochemical averages can be calculated to better than 30% for most elements from fewer than ten chemical analyses for a typical drill core (100-1000 m). Combining the geochemical systematics with convergence rate and other parameters permits calculation of regional compositional fluxes for subducting sediment. These regional fluxes can be compared to the compositions of arc volcanics to asses the importance of sediment subduction to arc volcanism. For the 70% of the trenches worldwide where estimates can be made, the regional fluxes also provide the basis for a global subducting sediment (GLOSS) composition and flux. GLOSS is dominated by terrigenous material (76 wt% terrigenous, 7 wt% calcium carbonate, 10 wt% opal, 7 wt% mineral-bound H2O+), and therefore similar to upper continental crust (UCC) in composition. Exceptions include enrichment in Ba, Mn and the middle and heavy REE, and depletions in detrital elements diluted by biogenic material (alkalis, Th, Zr, Hf). Sr and Pb are identical in GLOSS and UCC as a result of a balance between dilution and enrichment by marine phases. GLOSS and the systematics of marine sediments provide an independent approach to the composition of the upper continental crust for detrital elements. Significant discrepancies of up to a factor of two exist between the marine sediment data and current upper crustal estimates for Cs, Nb, Ta and Ti. Suggested revisions to UCC include Cs (7.3 ppm), Nb (13.7 ppm), Ta (0.96 ppm) and TiO2 (0.76 wt%). These revisions affect recent bulk continental crust estimates for La/Nb and U/Nb, and lead to an even greater contrast between the continents and mantle for these important trace element ratios. GLOSS and the regional sediment data also provide new insights into the mantle sources of oceanic basalts. The classical geochemical distinction between 'pelagic' and 'terrigenous' sediment sources is not valid and needs to be replaced by a more comprehensive understanding of the compositional variations in complete sedimentary columns. In addition, isotopic arguments based on surface sediments alone can lead to erroneous conclusions. Specifically, the Nd/Hf ratio of GLOSS relaxes considerably the severe constraints on the amount of sediment recycling into the mantle based on earlier estimates from surface sediment compositions.
Resumo:
A record of inorganic geochemical variability was produced from a contiguous sequence of 35 samples, with 1 cm spacing, recovered from Hole 1221C. This record covers from 153.91 to 154.27 meters below seafloor and spans the Carbon Isotope Excursion (CIE) associated with the Paleocene/Eocene boundary interval. Elemental concentrations were determined for Al, As, Ba, Ca, Fe, K, Mg, Mn, P, Si, Sr, Ti, Cd, Co, Cr, Cu, Hf, Mo, Nb, Ni, Pb, Pt, Re, Sc, V, Y, Zn, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Most concentration profiles exhibit a marked peak coincident with or just prior to the CIE. In addition, the rare earth element pattern exhibits a significant flattening of the typical, prominent negative Ce anomaly across the same interval.
Resumo:
The distributions of calcium carbonate, of amorphous silica, and of 21 chemical compounds and elements in sediments of Holes 515A, 515B, 516, 516F, 517, and 518 are highly nonuniform; they change depending on the sediment types, grain size, and mineral composition. The main source of the lithogenous elements (K, Li, Rb, Fe, Ti, Zr, Ni, Cr, Sn) is terrigenous matter of South America. These elements correlate well or at least satisfactorily with each other and with the sum of clay minerals. CaCO3, amorphous SiO2 and organic C form a second group, the main source of which is biota of the ocean. Zn, Cu, Ba, Mo, (V, Na) are a third group, which is supplied by both terrigenous and biogenic matter. Judging by the distribution of chemical elements and components in sediments of Site 515, this area of the Brazil Basin is characterized by the rather constant conditions of pelagic terrigenous sedimentation from upper Eocene till Holocene. Small changes in chemical composition of sediments throughout the section are linked mainly to the evolution of subaerial source provinces, changes in hydrodynamic regime, and fluctuations of the ocean level. The chemical composition of sediments from the Rio Grande Rise sites suggests the existence of three main stages of sedimentation in this area. The first stage is the initial period of sediment accumulation on basalts at the beginning of the Late Cretaceous. Then followed sedimentary conditions notable for their sharp changes in chemical composition and type. Beginning in the middle Eocene and persisting into the Holocene, stable conditions of sedimentation characterize a third stage, represented by the formation of approximately 700 m of nannofossil oozes of rather monotonous chemical composition.
Resumo:
ODP Hole 740A is located on the inner part of the East Antarctic continental shelf in Prydz Bay, at the seaward end of a major onshore rift structure known as the Lambert Graben. Drilling at this site led to the recovery of some 65 m of continental sediments (Prydz Bay red beds) that form part of a much thicker (2-3 km) pre-continental breakup sequence, the development of which may be related to the initiation and rifting of the Lambert Graben. Palynological and paleomagnetic studies have not been able to determine the age of the sediments; they may be equivalent to the onshore late Permian Amery Group or younger. The succession consists predominantly of sandstone, siltstone, and claystone arranged in erosively based, pedogenically influenced fining-upward sequences up to 5 m thick. These were deposited by shallow, braided streams draining an extensively vegetated alluvial plain, with sufficient topographic relief to trap fine-grained sediment and inhibit rapid channel shifting. Pedogenic processes were initiated on the alluvial plain, but climatic conditions were generally unsuitable for extensive pedogenic carbonate formation and the development of mature soil profiles. The sediments were probably derived from a rapidly uplifted fault block terrain composed of upper Proterozoic and Archaean gneisses lying to the southeast of the depositional site. Uplift may have taken place along the tectonically active seaward extension of the eastern faulted margin of the Lambert Graben, which passes immediately southeast of Hole 740A. Differences in mineralogical composition between the Amery Group and the Prydz Bay red beds probably reflect differences in rock composition in the source area. The age of the Prydz Bay red beds has still to be resolved.