50 resultados para Caribbean Basin Initiative, 1983-
Resumo:
After nearly 30 years of growth in geochronologic knowledge, the originally published age models for many older deep sea marine sections have become badly outdated. In this report we present newly revised age models for Neogene sediments from 94 DSDP holes. Biostratigraphic data for planktonic foraminifers, calcareous nannofossils, diatoms and radiolarians, paleomagnetic and other stratigraphic data were compiled from the original Initial Reports volumes of DSDP. The Berggren et al. (1985 doi:10.1130/0016-7606(1985)96<1407:CG>2.0.CO;2) scale was used for the age of magnetic reversals, and a variety of recent papers were used to establish a standard modern set of calibrations for marine microfossil events to the magnetic reversal scale. New age vs depth plots were made for each hole, and for each a new line of correlation was created. All tabulated stratigraphic data, new age models, and age depth plots are given as appendices to the report.
Resumo:
Approaches to quantify the organic carbon accumulation on a global scale generally do not consider the small-scale variability of sedimentary and oceanographic boundary conditions along continental margins. In this study, we present a new approach to regionalize the total organic carbon (TOC) content in surface sediments (<5 cm sediment depth). It is based on a compilation of more than 5500 single measurements from various sources. Global TOC distribution was determined by the application of a combined qualitative and quantitative-geostatistical method. Overall, 33 benthic TOC-based provinces were defined and used to process the global distribution pattern of the TOC content in surface sediments in a 1°x1° grid resolution. Regional dependencies of data points within each single province are expressed by modeled semi-variograms. Measured and estimated TOC values show good correlation, emphasizing the reasonable applicability of the method. The accumulation of organic carbon in marine surface sediments is a key parameter in the control of mineralization processes and the material exchange between the sediment and the ocean water. Our approach will help to improve global budgets of nutrient and carbon cycles.
Resumo:
Oceanic flood basalts are poorly understood, short-term expressions of highly increased heat flux and mass flow within the convecting mantle. The uniqueness of the Caribbean Large Igneous Province (CLIP, 92-74 Ma) with respect to other Cretaceous oceanic plateaus is its extensive sub-aerial exposures, providing an excellent basis to investigate the temporal and compositional relationships within a starting plume head. We present major element, trace element and initial Sr-Nd-Pb isotope composition of 40 extrusive rocks from the Caribbean Plateau, including onland sections in Costa Rica, Colombia and Curaçao as well as DSDP Sites in the Central Caribbean. Even though the lavas were erupted over an area of ~3*10**6 km**2, the majority have strikingly uniform incompatible element patterns (La/Yb=0.96+/-0.16, n=64 out of 79 samples, 2sigma) and initial Nd-Pb isotopic compositions (e.g. 143Nd/144Ndin=0.51291+/-3, epsilon-Nd i=7.3+/-0.6, 206Pb/204Pbin=18.86+/-0.12, n=54 out of 66, 2sigma). Lavas with endmember compositions have only been sampled at the DSDP Sites, Gorgona Island (Colombia) and the 65-60 Ma accreted Quepos and Osa igneous complexes (Costa Rica) of the subsequent hotspot track. Despite the relatively uniform composition of most lavas, linear correlations exist between isotope ratios and between isotope and highly incompatible trace element ratios. The Sr-Nd-Pb isotope and trace element signatures of the chemically enriched lavas are compatible with derivation from recycled oceanic crust, while the depleted lavas are derived from a highly residual source. This source could represent either oceanic lithospheric mantle left after ocean crust formation or gabbros with interlayered ultramafic cumulates of the lower oceanic crust. High 3He/4He in olivines of enriched picrites at Quepos are ~12 times higher than the atmospheric ratio suggesting that the enriched component may have once resided in the lower mantle. Evaluation of the Sm-Nd and U-Pb isotope systematics on isochron diagrams suggests that the age of separation of enriched and depleted components from the depleted MORB source mantle could have been <=500 Ma before CLIP formation and interpreted to reflect the recycling time of the CLIP source. Mantle plume heads may provide a mechanism for transporting large volumes of possibly young recycled oceanic lithosphere residing in the lower mantle back into the shallow MORB source mantle.
Resumo:
X-ray computed tomography (CT) provides an insight into the progression of dissolution in the tests of planktonic foraminifera. Four species of foraminifera (G. ruber [white], G. sacculifer, N. dutertrei and P. obliquiloculata) from Pacific, Atlantic and Indian Ocean core-top samples were examined by CT and SEM. Inner chamber walls began to dissolve at Delta[CO3**2-] values of 12-14 µmol/kg. Close to the calcite saturation horizon, dissolution and precipitation of calcite may occur simultaneously. Inner calcite of G. sacculifer, N. dutertrei and P. obliquiloculata from such sites appeared altered or replaced, whereas outer crust calcite was dense with no pores. Unlike the other species, there was no distinction between inner and outer calcite in CT scans of G. ruber. Empty calcite crusts of N. dutertrei and P. obliquiloculata were most resistant to dissolution and were present in samples where Delta[CO3**2-] ~ -20 µmol/kg. Five stages of preservation were identified in CT scans, and an empirical dissolution index, XDX, was established. XDX appears to be insensitive to initial test mass. Mass loss in response to dissolution was similar between species and sites at ~ 0.4 µg/µmol/kg. We provide calibrations to estimate Delta[CO3**2-] and initial test mass from XDX.