325 resultados para CAL BP


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Excavations were carried out in a Late Palaeolithic site in the community of Bad Buchau-Kappel between 2003 and 2007. Archaeological investigations covered a total of more than 200 m**2. This site is the product of what likely were multiple occupations that occurred during the Late Glacial on the Federsee shore in this location. The site is situated on a mineral ridge that projected into the former Late Glacial lake Federsee. This beach ridge consists of deposits of fine to coarse gravel and sand and was surrounded by open water, except for a connection to the solid shore on the south. A lagoon lay between the hook-shaped ridge and the shore of the Federsee. This exposed location provided optimal access to the water of the lake. In addition, the small lagoon may have served as a natural harbor for landing boats or canoes. Sedimentological and palynological investigations document the dynamic history of the location between 14,500 and 11,600 years before present (cal BP). Evidence of the deposition of sands, gravels and muds since the Bølling Interstadial is provided by stratigraphic and palynological analyses. The major occupation occurred in the second half of the Younger Dryas period. Most of the finds were located on or in the sediments of the ridge; fewer finds occurred in the surrounding mud, which was also deposited during the Younger Dryas. Direct dates on some bone fragments, however, demonstrate that intermittent sporadic occupations also took place during the two millennia of the Meiendorf, Bølling, and Allerød Interstadials. These bones were reworked during the Younger Dryas and redeposited in the mud. A 14C date from one bone of 11,600 years ago (cal BP) places the Late Palaeolithic occupation of the ridge at the very end of the Younger Dryas, which is in agreement with stratigraphic observations. Stone artifacts, numbering 3,281, comprise the majority of finds from the site. These include typical artifacts of the Late Palaeolithic, such as backed points, short scrapers, and small burins. There are no bipointes or Malaurie-Points, which is in accord with the absolute date of the occupation. A majority of the artifacts are made from a brown chert that is obtainable a few kilometers north of the site in sediments of the Graupensandrinne. Other raw materials include red and green radiolarite that occur in the fluvioglacial gravels of Oberschwaben, as well as quartzite and lydite. The only non-local material present is a few artifacts of tabular chert from the region near Kelheim in Bavaria. A unique find consists of two fragments of a double-barbed harpoon made of red deer antler, which was found in the Younger Dryas mud. It is likely, but not certain, that this find belongs to the same assemblage as the numerous stone artifacts. Although not numerous, animal bones were also found in the excavations. Most of them lay in sediments of the Younger Dryas, but several 14C dates place some of these bones in earlier periods, including the Meiendorf, Bølling, and Allerød Interstadials. These bones were reworked by water and redeposited in mud sediments during the Younger Dryas. As a result, it is difficult to attribute individual bones to particular chronological positions without exact dates. Species that could be identified include wild horse (Equus spec.), moose or elk (Alces alces), red deer (Cervus elaphus), roe deer (Capreolus capreolus), aurochs or bison (Bos spec.), wild boar (Sus scrofa), as well as birds and fish, including pike (Esox Lucius).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Detailed study of four Holocene sediment intervals from Ocean Drilling Program Site 1098 (Palmer Deep, Antarctic Peninsula) reveals that in situ dissolution of calcareous foraminifers in the core repository has significantly altered and in some cases eliminated calcareous foraminifers. Despite dissolution, the foraminifer and supporting diatom data show that the most open-ocean and reduced sea-ice conditions occurred in the early Holocene. The influence of Circumpolar Deep Water was greatest during the early Holocene but continued to be important throughout the Holocene. An increase in sea-ice proximal diatoms at 3500 cal. BP documents an expansion in the amount of persistent sea ice. The inferred increase in sea ice corresponds with an overall increase in magnetic susceptibility values. Benthic foraminifers are present in all samples from the Palmer Deep, including the middle Holocene pervasively laminated sediments with low magnetic susceptibility values. The consistent presence of mobile epifaunal benthic foraminifers in the laminated sediments demonstrates that the laminations do not represent anoxic conditions. The uniform composition of the agglutinated foraminifer fauna throughout the late Holocene suggests that the Palmer Deep did not experience bottom-water-mass changes associated with the alternating deposition of bioturbated or laminated sediments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Terrigenous sediment supply, marine transport, and depositional processes along tectonically active margins are key to decoding turbidite successions as potential archives of climatic and seismic forcings. Sequence stratigraphic models predict coarse-grained sediment delivery to deep-marine sites mainly during sea-level fall and lowstand. Marine siliciclastic deposition during transgressions and highstands has been attributed to sustained connectivity between terrigenous sources and marine sinks facilitated by narrow shelves. To decipher the controls on Holocene highstand turbidite deposition, we analyzed 12 sediment cores from spatially discrete, coeval turbidite systems along the Chile margin (29° - 40°S) with changing climatic and geomorphic characteristics but uniform changes in sea level. Sediment cores from intraslope basins in north-central Chile (29° - 33°S) offshore a narrow to absent shelf record a shut-off of turbidite deposition during the Holocene due to postglacial aridification. In contrast, core sites in south-central Chile (36° - 40°S) offshore a wide shelf record frequent turbidite deposition during highstand conditions. Two core sites are linked to the Biobío river-canyon system and receive sediment directly from the river mouth. However, intraslope basins are not connected via canyons to fluvial systems but yield even higher turbidite frequencies. High sediment supply combined with a wide shelf and an undercurrent moving sediment toward the shelf edge appear to control Holocene turbidite sedimentation and distribution. Shelf undercurrents may play an important role in lateral sediment transport and supply to the deep sea and need to be accounted for in sediment-mass balances.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Siliciclastic turbidites represent huge volumes of sediments, which are of particular significance for (1) petroleum researchers, interested in their potential as oil reservoirs and (2) sedimentologists, who aim at understanding sediment transport processes from continent to deep-basins. An important challenge when studying marine turbidites has been to establish a reliable chronology for the deposits. Indeed, conventional marine proxies applied to hemipelagic sediments are often unreliable in detrital clays. In siliciclastic turbidites, those proxies can be used only in hemipelagic intervals, providing a poor constraint on their chronology. In this study, we have used sediments from the Rhône Neofan (NW Mediterranean Sea) to demonstrate that pollen grains can provide a high-resolution chronostratigraphical framework for detrital clays in turbidites. Vegetation changes occurring from the end of Marine Isotopic Stage 3 to the end of Marine Isotopic Stage 2 (from ~30 to ~18 ka cal. BP) are clearly recorded where other proxies have failed previously, mainly because the scarcity of foraminifers in these sediments prevented any continuous Sea Surface Temperature (SST) record and radiocarbon dating to be obtained. We show also that the use of palynology in turbidite deposits is able to contribute to oceanographical and sedimentological purposes: (1) Pinus pollen grains can document the timing of sea-level rise, (2) the ratio between pollen grains transported from the continent via rivers and dinoflagellate cysts (elutriating) allows us to distinguish clearly detrital sediments from pelagic clays. Finally, taken together, all these tools show evidence that the Rhône River disconnected from the canyon during the sea-level rise and thus evidence the subsequent rapid starvation of the neofan at 18.5 ka cal. BP. Younger sediments are hemipelagic: the frequency of foraminifers allowed to date sediments with radiocarbon. First results of Sea Surface Temperature obtained on foraminifers are in good agreement with the dinoflagellate cysts climatic signal. Both provide information on the end of the deglaciation and the Holocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Well-dated benthic foraminifer oxygen isotopic records (d18O) from different water depths and locations within the Atlantic Ocean exhibit distinct patterns and significant differences in timing over the last deglaciation. This has two implications: on the one hand, it confirms that benthic d18O cannot be used as a global correlation tool with millennial-scale precision, but on the other hand, the combination of benthic isotopic records with independent dating provides a wealth of information on past circulation changes. Comparing new South Atlantic benthic isotopic data with published benthic isotopic records, we show that (1) circulation changes first affected benthic d18O in the 1000-2200 m range, with marked decreases in benthic d18O taking place at ~17.5 cal. kyr B.P. (ka) due to the southward propagation of brine waters generated in the Nordic Seas during Heinrich Stadial 1 (HS1) cold period; (2) the arrival of d18O-depleted deglacial meltwater took place later at deeper North Atlantic sites; (3) hydrographic changes recorded in North Atlantic cores below 3000 m during HS1 do not correspond to simple alternations between northern- and southern-sourced water but likely reflect instead the incursion of brine-generated deep water of northern as well as southern origin; and (4) South Atlantic waters at ~44°S and ~3800 m depth remained isolated from better-ventilated northern-sourced water masses until after the resumption of North Atlantic Deep Water (NADW) formation at the onset of the Bølling-Allerod, which led to the propagation of NADW into the South Atlantic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In September 2008 several cores (68 cm-115 cm length) (water depth: 93 m) were retrieved from Lake Nam Co (southern-central Tibetan Plateau; 4718 m a.s.l.). This study focuses on the interpretation of high-resolution (partly 0.2 cm) data from three gravity cores and the upper part of a 10.4 m long piston core, i.e., the past 4000 cal BP in terms of lake level changes, hydrological variations in the catchment area and consequently variations in monsoon strength. A wide spectrum of sedimentological, geochemical and mineralogical investigations was carried out. Results are presented for XRF core-scans, grain size distribution, XRD-measurements and SEM-image analyses. These data are complemented by an age-depth model using 210Pb and 137Cs analyses as well as eleven AMS-14C-ages. This model is supported by excellent agreement between secular variations determined on one of the gravity cores to geomagnetic field models. This is a significant improvement of the chronology as most catchments of lacustrine systems on the Tibetan Plateau contain carbonates resulting in an unknown reservoir effect for radiocarbon dates. The good correlation of our record to the geomagnetic field models confirms our age-depth model and indicates only insignificant changes in the reservoir effect throughout the last 4 ka. High (summer-) monsoonal activity, i.e. moist environmental conditions, was detected in our record between approximately 4000 and 1950 cal BP as well as between 1480 and 1200 cal BP. Accordingly, lower monsoon activity prevails in periods between the two intervals and thereafter. This pattern shows a good correlation to the variability of the Indian Ocean Summer Monsoon (IOSM) as recorded in a peat bog ~1000 km in NE direction from Lake Nam Co. This is the first time that such a supra regional homogenous monsoon activity is shown on the Tibetan Plateau and beyond. Finally our data show a significant lake level rise after the Little Ice Age (LIA) in Lake Nam Co which is suggested to be linked to glacier melting in consequence of rising temperatures occurring on the whole Tibetan Plateau during this time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The modern Aegean Sea is an important source of deep water for the eastern Mediterranean. Its contribution to deep water ventilation is known to fluctuate in response to climatic variation on a decadal timescale. This study uses marine micropalaeontological and stable isotope data to investigate longer-term variability during the late glacial and Holocene, in particular that associated with the deposition of the early Holocene dysoxic/anoxic sapropel S1. Concentrating on the onset of sapropel-forming conditions, we identify the start of 'seasonal' stratification and highlight a lag in d18O response of the planktonic foraminifer N. pachyderma to termination T1b as identified in the d18O record of G. ruber. By use of a simple model we determine that this offset cannot be a function of bioturbation effects. The lag is of the order of 1 kyr and suggests that isolation of intermediate/deep water preceded the start of sapropel formation by up to 1.5 kyr. Using this discovery, we propose an explanation for the major unresolved problem in sapropel studies, namely, the source of nutrient supply required for export productivity to reach levels needed for sustained sapropel deposition. We suggest that nutrients had been accumulating in a stagnant basin for 1-1.5 kyr and that these accumulated resources were utilized during the deposition of S1. In addition, we provide a first quantitative estimate of the diffusive (1/e) mixing timescale for the eastern Mediterranean in its "stratified" sapropel mode, which is of the order of 450 years.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An 1180-cm long core recovered from Lake Lyadhej-To (68°15'N, 65°45'E, 150 m a.s.l.) at the NW rim of the Polar Urals Mountains reflects the Holocene environmental history from ca. 11,000 cal. yr BP. Pollen assemblages from the diamicton (ca. 11,000-10,700 cal. yr BP) are dominated by Pre-Quaternary spores and redeposited Pinaceae pollen, pointing to a high terrestrial input. Turbid and nutrient-poor conditions existed in the lake ca. 10,700-10,550 cal. yr BP. The chironomid-inferred reconstructions suggest that mean July temperature increased rapidly from 10.0 to 11.8 °C during this period. Sparse, treeless vegetation dominated on the disturbed and denuded soils in the catchment area. A distinct dominance of planktonic diatoms ca. 10,500-8800 cal. yr BP points to the lowest lake-ice coverage, the longest growing season and the highest bioproductivity during the lake history. Birch forest with some shrub alder grew around the lake reflecting the warmest climate conditions during the Holocene. Mean July temperature was likely 11-13 °C and annual precipitation-400-500 mm. The period ca. 8800-5500 cal. yr BP is characterized by a gradual deterioration of environmental conditions in the lake and lake catchment. The pollen- and chironomid-inferred temperatures reflect a warm period (ca. 6500-6000 cal. BP) with a mean July temperature at least 1-2 °C higher than today. Birch forests disappeared from the lake vicinity after 6000 cal. yr BP. The vegetation in the Lyadhej-To region became similar to the modern one. Shrub (Betula nana, Salix) and herb tundra have dominated the lake catchment since ca. 5500 cal. yr BP. All proxies suggest rather harsh environmental conditions. Diatom assemblages reflect relatively short growing seasons and a longer persistence of lake-ice ca. 5500-2500 cal. yr BP. Pollen-based climate reconstructions suggest significant cooling between ca. 5500 and 3500 cal. yr BP with a mean July temperature 8-10 °C and annual precipitation-300-400 mm. The bioproductivity in the lake remained low after 2500 cal. yr BP, but biogeochemical proxies reflect a higher terrestrial influx. Changes in the diatom content may indicate warmer water temperatures and a reduced ice cover on the lake. However, chironomid-based reconstructions reflect a period with minimal temperatures during the lake history.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We attempt a reconstruction of salinity levels of the central Baltic Sea based on diatom assemblages, the isotopic composition of organic matter and sedimentological expression of anoxia over the last 10 000 years. We use the data to investigate the dependence of salinity levels on climate evolution and isostasy. Changes in salinity of surface and deep waters were most pronounced from 8400 to approximately 5000 cal. BP. Density stratification between salty deep and fresher surface waters caused the frequent development of anoxic conditions and deposition of laminated sediments on large parts of the sea floor in the central Baltic Sea, and dramatic changes in organic carbon-accumulation rates. From 5000 to 3100 cal. BP, the salinity of the basin decreased, oxygenation of deep sea floors was improved, and fertility of the sea surface was significantly reduced. This is reflected by low accumulation rates of organic carbon in bioturbated sediments. Since 2800 cal. BP, salinity rose again and anoxic periods were more common. Even though the major steps in environmental evolution in the Baltic Sea coincide with known patterns of climatic change of the North Atlantic realm over the last 10 000 years, we find no conclusive evidence for synchronous changes or linear responses on submillennial timescales. However, we note that major variations in our salinity records agree with temporal patterns of reconstructed summer warmth and winter precipitation in southern Scandinavia. Both types of record suggest that climate in the mid-Holocene was far from stable. Our data also confirm that climate evolution over the late Holocene had significant impact on environmental conditions in the Baltic Sea.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To unravel the climatic and environmental dynamics in the borderlands of the Aegean Sea during the early and middle Holocene, and notably for the interval of sapropel S1 (S1) formation, we have analysed terrestrial palynomorphs from a marine core in the northern Aegean Sea. The qualitative results were complemented by quantitative pollen-based climate reconstructions. A land-sea correlation was established based on pollen data and sediment lightness measurements from the same core, and previously published benthic foraminifer data from a nearby core. The borderlands of the Aegean Sea underwent a transition from an open vegetation to oak-dominated woodlands between ~10.4 and ~9.5 ka cal BP. A coeval increase in winter precipitation suggests that moisture availability was the main factor controlling Holocene reforestation. The ~50% higher winter precipitation during S1 formation relative to "pre-sapropelic" conditions suggests a strong contribution from the borderlands of the Aegean Sea to the freshwater surplus during S1 formation. The humid and mild winter conditions during S1 formation were repeatedly punctuated by short-term climatic events that caused a partial deforestation and a reorganisation within the broad-leaved arboreal vegetation. In the marine realm, these events are documented by improved benthic oxygenation. The strongest event represents the regional expression of the 8.2 ka cold event and led to an interruption in S1 formation. Except for the interval of S1 formation, the pollen-derived winter temperatures correlate with the smoothed GISP2 K+ series. They support the previously published, marine-based concept that the intensity of the Siberian High strongly controlled the winter climate in the Aegean region. During S1 formation in the Aegean Sea, however, climate conditions in the borderlands were more strongly affected by the monsoonally influenced climate system of the lower latitudes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A key feature of Greece is the large amount of historical and archaeological records. The sedimentary record of the Etoliko Lagoon, Aetolia, Western Greece, offers an ideal opportunity to study human-environment interaction and to disentangle natural and anthropogenic imprints in the sedimentary record. By applying an interdisciplinary approach of combining geoscientific methods (XRF, LOI, grain size analysis) with archaeological and historical records, the 8.8 m long sedimentary sequence ETO1C reveals the palaeoenvironmental history of the lagoon and its catchment since 11,670 cal BP. With a thorough chronology based on 14C age-depth-modelling including varve counting, different evolutionary stages were put in a chronological context. These stages include a lake period (11,670-8310 cal BP) followed by a period of sporadic saltwater intrusion (8310-1350 cal BP) as a result of continuing transgression. Phases of limnic predominance associated with freshwater inflow of episodically activated distributaries (around 5230 cal BP) still occurred. By 1350 cal BP, ongoing sea level rise had connected the lagoons of Etoliko and Messolonghi and freshwater influence had ceased. With the onset of settlement activity in the Late Helladic (1700-1100 cal BC) humans took advantage of the prevailing environmental landscape. A sudden increase in coarse sedimentation correlates with the history of human occupation with its peak of prosperity from the Late Helladic until the end of the Hellenistic Period (30 cal BC).