609 resultados para Bloody Brook Monument (South Deerfield, Mass.)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediment trap moorings were deployed from September 21, 1997 through February 21, 1998 at three locations south of Australia along 140°E: at -47°S in the central Subantarctic Zone (SAZ) with traps at 1060, 2050, and 3850 m depth, at -51°S in the Subantarctic Front with one trap at 3080 m, and at -54°S in the Polar Frontal Zone (PFZ) with traps at 830 and 1580 m. Particle fluxes were high at all the sites (18-32 g/m**2/yr total mass and 0.5-1.4 g organic carbon/m**2/yr at -1000 m, assuming minimal flux outside the sampled summer period). These values are similar to other Southern Ocean results and to the median estimated for the global ocean by Lampitt and Antia [1997], and emphasize that the Southern Ocean exports considerable carbon to the deep sea despite its 'high-nutrient, low chlorophyll' characteristics. The SAZ site was dominated by carbonate (>50% of total mass) and the PFZ site by biogenic silica (>50% of total mass). Both sites exhibited high export in spring and late summer, with an intervening low flux period in December. For the 153 day collection period, particulate organic carbon export was somewhat higher in all the traps in the SAZ (range 0.57-0.84 gC/m**2) than in the PFZ (range 0.31-0.53), with an intermediate value observed at the SAF (0.60). The fraction of surface organic carbon export (estimated from seasonal nutrient depletion, Lourey and Trull [2001]) reaching 1000 m was indistinguishable in the SAZ and PFZ, despite different algal communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Benthic foraminiferal stable isotope records for the past 11 Myr from a recently drilled site in the sub-Antarctic South Atlantic (Site 1088, Ocean Drilling Program Leg 177, 41°S, 15°E, 2082 m water depth) provide, for the first time, a continuous long-term perspective on deep water distribution patterns and Southern Ocean climate change from the late Miocene through the early Pliocene. I have compiled published late Miocene through Pliocene stable isotope records to place the new South Atlantic record in a global framework. Carbon isotope gradients between the North Atlantic, South Atlantic, and Pacific indicate that a nutrient-depleted watermass, probably of North Atlantic origin, reached the sub-Antarctic South Atlantic after 6.6 Ma. By 6.0 Ma the relative proportion of the northern-provenance watermass was similar to today and by the early Pliocene it had increased to greater than the modern proportion suggesting that thermohaline overturn in the Atlantic was relatively strong prior to the early Pliocene interval of inferred climatic warmth. Site 1088 oxygen isotope values display a two-step increase between ~7.4 Ma and 6.9 Ma, a trend that parallels a published delta18O record of a site on the Atlantic coast of Morocco. This is perhaps best explained by a gradual cooling of watermasses that were sinking in the Southern Ocean. I speculate that relatively strong thermohaline overturn at rates comparable to the present day interglacial interval during the latest Miocene may have provided the initial conditions for early Pliocene climatic warmth. The impact of an emerging Central American Seaway on Atlantic-Pacific Ocean upper water exchange may have been felt in the North Atlantic beginning in the latest Miocene between 6.6 and 6.0 Ma, which would be ~1.5 Myr earlier than previously thought.