624 resultados para Benthic amphipod


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rising seawater temperature and CO2 concentrations (ocean acidification) represent two of the most influential factors impacting marine ecosystems in the face of global climate change. In ecological climate change research full-factorial experiments across seasons in multi-species, cross-trophic level set-ups are essential as they allow making realistic estimations about direct and indirect effects and the relative importance of both major environmental stressors on ecosystems. In benthic mesocosm experiments we tested the responses of coastal Baltic Sea Fucus vesiculosus communities to elevated seawater temperature and CO2 concentrations across four seasons of one year. While increasing [CO2] levels only had minor effects, warming had strong and persistent effects on grazers which affected the Fucus community differently depending on season. In late summer a temperature-driven collapse of grazers caused a cascading effect from the consumers to the foundation species resulting in overgrowth of Fucus thalli by epiphytes. In fall/ winter, outside the growing season of epiphytes, intensified grazing under warming resulted in a significant reduction of Fucus biomass. Thus, we confirm the prediction that future increasing water temperatures influence marine food-web processes by altering top-down control, but we also show that specific consequences for food-web structure depend on season. Since Fucus vesiculosus is the dominant habitat-forming brown algal system in the Baltic Sea, its potential decline under global warming implicates the loss of key functions and services such as provision of nutrient storage, substrate, food, shelter and nursery grounds for a diverse community of marine invertebrates and fish in Baltic Sea coastal waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years there has been considerable discussion concerning the biostratigraphic correlations between planktonic zonations and the classical Neogene California benthic foraminiferal stages. One of the primary objectives of IPOD Leg 63 was to investigate these correlations and to determine the possibility of temporal variation of the benthic stages between California land sections and the outer Continental Borderland. In addition, it was anticipated that analyses of the benthic foraminiferal faunas at Site 468 would provide critical information on the paleoenvironmental history of the outer borderland. The provincial benthic Neogene foraminiferal stages were established by Kleinpell (1938) for the Miocene and Natland (1952) for the Pliocene-Pleistocene; both are well-documented in designated type sections. These stages have been used for interbasinal correlations, although time-transgressive problems have been suggested by several authors (Bandy, 1971; Ingle, 1967, 1973; Crouch and Bukry, 1979). An important biostratigraphic sequence occurs at Site 468, significant because of its relatively shallow depth of approximately 1700 meters. The samples yield well-preserved benthic foraminiferal faunas throughout most of the Neogene sequence and are accompanied by abundant well-preserved calcareous and siliceous planktonic assemblages. It is this co-occurrence of both planktonic and benthic faunas that enables the correlation of outer continental margin sediments with those of the classical land-based sections of southern California.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While onboard ship during Leg 177, we used variations in sediment physical properties (mainly percent color reflectance) in conjunction with biomagnetostratigraphy to correlate among sites and predict the position of marine isotope stages (MISs) (e.g., see fig. F11 in Shipboard Scientific Party, 1999, p. 45). Our working assumption was that physical properties of Leg 177 sediments are controlled mainly by variations in carbonate content. Previous studies of Southern Ocean sediment cores have shown that carbonate concentrations are relatively high during interglacial stages and low during glacial stages at sites located within the Polar Frontal Zone (PFZ). Today, the PFZ marks a lithologic boundary in underlying sediment separating calcareous oozes to the north and silica-rich facies to the south (Hays et al., 1976). Although there is debate whether the position of the "physical" PFZ actually moved during glacial-interglacial cycles (Charles and Fairbanks, 1990; Matsumoto et al., 2001), the "biochemical" PFZ, as expressed by the CaCO3/opal boundary in sediments, certainly migrated north during glacials and south during interglacials. This gave rise to lithologic variations that are useful for stratigraphic correlation. At Leg 177 sites located north of the PFZ and at sublysoclinal depths, we expected the same pattern of carbonate variation because cores in the Atlantic basin are marked by increased carbonate dissolution during glacial periods and increased preservation during interglacials (Crowley, 1985).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On- and off-mound sediment cores from Propeller Mound (Hovland Mound province, Porcupine Seabight) were analysed to understand better the evolution of a carbonate mound. The evaluation of benthic foraminiferal assemblages from the off-mound position helps to determine the changes of the environmental controls on Propeller Mound in glacial and interglacial times. Two different assemblages describe the Holocene and Marine Isotope Stage (MIS) 2 and late MIS 3 (~31 kyr BP). The different assemblages are related to changes in oceanographic conditions, surface productivity and the waxing and waning of the British Irish Ice Sheet (BIIS) during the last glacial stages. The interglacial assemblage is related to a higher supply of organic material and stronger current intensities in water depth of recent coral growth. During the last glaciation the benthic faunas showed high abundances of cassidulinid species, implying cold bottom waters and a reduced availability of organic matter. High sedimentation rates and the domination of Elphidium excavatum point to shelf erosion related to sea-level lowering (~50 m) and the progradation of the BIIS onto the shelf. A different assemblage described for the on-mound core is dominated by Discanomalina coronata, Gavelinopsis translucens, Planulina ariminensis, Cibicides lobatulus and to a lower degree by Hyrrokkin sarcophaga. These species are only found or show significantly higher relative abundances in on-mound samples and their maximum contribution in the lower part of the record indicates a higher coral growth density on Propeller Mound in an earlier period. They are less abundant during the Holocene, however. This dataset portrays the boundary conditions of the habitable range for the cold-water coral Lophelia pertusa, which dominates the deep-water reefal ecosystem on the upper flanks of Propeller Mound. The growth of this ecosystem occurs during interglacial and interstadial periods, whereas a retreat of corals is documented in the absence of glacial sediments on-mound. Glacial conditions with cold intermediate waters, a weak current regime and high sedimentation rates provide an unfavourable environmental setting for Lophelia corals to grow. A Late Pleistocene decrease is observed in the mound growth for Propeller Mound, which might face its complete burial in the future, as it already happened to the buried mounds of the Magellan Mound province further north.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediments from the western and southern part of the Arabian Sea were collected periodically in the spring intermonsoon between March and May 1997 and additionally at the end of the Northeast Monsoon in February 1998. Assemblages of Rose Bengal stained, living deep-sea benthic foraminifera, their densities, vertical distribution pattern, and diversity were analysed after the Northeast Monsoon and short-time changes were recorded. In the western Arabian Sea, foraminiferal numbers increased steadily between March and the beginning of May, especially in the smaller size classes (30-63 µm, 63-125 µm). At the same time, the deepening of the foraminiferal living horizon, variable diversity and rapid variations between dominant foraminiferal communities were observed. We interpret these observations as the time-dependent response of benthic foraminifera to enhanced organic carbon fluxes during and after the Northeast Monsoon. In the southern Arabian Sea, constant low foraminiferal abundances during time, no distinctive change in the vertical distribution, reduced diversity, and more stable foraminiferal communities were noticed, which indicates no or little influence of the Northeast Monsoon to benthic foraminifera in this region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several widely correlatable intervals of laminated Thalassiothrix diatom mat deposits occur in Neogene sediments recovered from the eastern equatorial Pacific Ocean. The presence of laminated sediments in extensive areas of the deep open ocean floor raises fundamental questions concerning the cause of preservation of the laminations and the nature of the benthic environment during episodes of mat deposition. Traditional explanations for the preservation of laminations have centered on restriction of dissolved oxygen. Studies of benthic foraminifers through the laminated intervals show no evidence for an increase in absolute or relative abundance of species characteristic of a low oxygen environment, but rather a decrease in relative abundance of infaunal forms attesting to the impenetrability of the diatom meshwork formed by the interlocking Thalassiothrix frustules. These results support evidence from coring of the high tensile strength of the Thalassiothrix laminations suggesting that the diatom meshwork was of sufficient tensile strength and impenetrability to suppress infaunal benthic activity. Comparison of the relative abundances of foraminifers in the enclosing ôbackgroundö sediment of foraminifer nannofossil ooze and the laminated diatom oozes shows that some epifaunal species (e.g., Cibicides spp.) increase in relative abundance within the laminated sediment, whereas others (e.g., Epistominella exigua) show a marked decrease in relative abundance. Other species show more complex changes in abundance related to the occurrence of the laminated sediments, which may indicate a combination of controls that include the physical nature of the substrate and the amount of organic flux.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five holes were drilled at two sites in the Sea of Japan during Ocean Drilling Program (ODP) Leg 128. Site 798 is located on Oki Ridge at a depth of about 900 m. Sediment age at Site 798 ranges from Pliocene to Holocene. Site 799 is located in the Kita-Yamato Trough at depth of 2000 m and below the present calcite compensation depth (CCD); the sediment ranges from Miocene to Holocene in age. Samples from all holes contain benthic foraminifers. Faunal evidence of downslope displacement is frequent in Holes 799A and 799B. The vertical frequency distribution of some dominant species shows that significant faunal changes occur in Holes 798A-C on Oki Ridge. Based on the faunal change and the thickness of sediments, it appears that the Oki Ridge was uplifted more than 1,000 m during last 4 m.y. Benthic foraminifers also demonstrate that the water depth of Site 799 rapidly changed from upper bathyal to lower bathyal during middle Miocene time. The appearance of benthic foraminifer species common to anaerobic environments suggests that the dysaerobic to anaerobic bottom conditions existed during the evolution of the Sea of Japan. Faunal distributions also suggest that the 'Tertiary-type' species recognized in the Neogene strata of the Japan Sea coastal regions disappeared sequentially from the Sea of Japan during Pliocene to late Pleistocene.