151 resultados para BRANCHED POLYETHYLENES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relative to the present day, meridional temperature gradients in the Early Eocene age (~56-53 Myr ago) were unusually low, with slightly warmer equatorial regions (Pearson et al., 2007, doi:10.1130/G23175A.1 ) but with much warmer subtropical Arctic (Sluijs et al., 2008, doi:10.1029/2007PA001495) and mid-latitude (Sluijs et al., 2007, doi:10.1038/nature06400) climates. By the end of the Eocene epoch (~34 Myr ago), the first major Antarctic ice sheets had appeared (Zachos et al., 1992, doi:10.1130/0091-7613(1992)020<0569:EOISEO>2.3.CO;2; Barker et al., 2007, doi:10.1016/j.dsr2.2007.07.027), suggesting that major cooling had taken place. Yet the global transition into this icehouse climate remains poorly constrained, as only a few temperature records are available portraying the Cenozoic climatic evolution of the high southern latitudes. Here we present a uniquely continuous and chronostratigraphically well-calibrated TEX86 record of sea surface temperature (SST) from an ocean sediment core in the East Tasman Plateau (palaeolatitude ~65° S). We show that southwest Pacific SSTs rose above present-day tropical values (to ~34° C) during the Early Eocene age (~53 Myr ago) and had gradually decreased to about 21° C by the early Late Eocene age (~36 Myr ago). Our results imply that there was almost no latitudinal SST gradient between subequatorial and subpolar regions during the Early Eocene age (55-50 Myr ago). Thereafter, the latitudinal gradient markedly increased. In theory, if Eocene cooling was largely driven by a decrease in atmospheric greenhouse gas concentration Zachos et al. (2008, doi:10.1038/nature06588), additional processes are required to explain the relative stability of tropical SSTs given that there was more significant cooling at higher latitudes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A brief (~150 kyr) period of widespread global average surface warming marks the transition between the Paleocene and Eocene epochs, ~56 million years ago. This so-called "Paleocene-Eocene thermal maximum" (PETM) is associated with the massive injection of 13C-depleted carbon, reflected in a negative carbon isotope excursion (CIE). Biotic responses include a global abundance peak (acme) of the subtropical dinoflagellate Apectodinium. Here we identify the PETM in a marine sedimentary sequence deposited on the East Tasman Plateau at Ocean Drilling Program (ODP) Site 1172 and show, based on the organic paleothermometer TEX86, that southwest Pacific sea surface temperatures increased from ~26 °C to ~33°C during the PETM. Such temperatures before, during and after the PETM are >10 °C warmer than predicted by paleoclimate model simulations for this latitude. In part, this discrepancy may be explained by potential seasonal biases in the TEX86 proxy in polar oceans. Additionally, the data suggest that not only Arctic, but also Antarctic temperatures may be underestimated in simulations of ancient greenhouse climates by current generation fully coupled climate models. An early influx of abundant Apectodinium confirms that environmental change preceded the CIE on a global scale. Organic dinoflagellate cyst assemblages suggest a local decrease in the amount of river run off reaching the core site during the PETM, possibly in concert with eustatic rise. Moreover, the assemblages suggest changes in seasonality of the regional hydrological system and storm activity. Finally, significant variation in dinoflagellate cyst assemblages during the PETM indicates that southwest Pacific climates varied significantly over time scales of 103 - 104 years during this event, a finding comparable to similar studies of PETM successions from the New Jersey Shelf.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mediterranean Sea is at the transition between temperate and tropical air masses and as such of importance for studying climate change. The Gulf of Taranto and adjacent SW Adriatic Sea are at the heart of this region. Their sediments are excellently suited for generating high quality environmental records for the last millennia with a sub-decadal resolution. The quality of these records is dependent on a careful calibration of the transfer functions used to translate the sedimentary lipid signals to the local environment. Here, we examine and calibrate the UK'37 and TEX86 lipid-based temperature proxies in 48 surface sediments and relate these to ambient sea surface temperatures and other environmental data. The UK'37-based temperatures in surface sediments reflect winter/spring sea surface temperatures in agreement with other studies demonstrating maximum haptophyte production during the colder season. The TEX86-based temperatures for the nearshore sites also reflect winter sea surface temperatures. However, at the most offshore sites, they correspond to summer sea surface temperatures. Additional lipid and environmental data including the distribution of the BIT index and remote-sensed chlorophyll-a suggest a shoreward increase of the impact of seasonal and spatial variability in nutrients and control of planktonic archaeal abundance by primary productivity, particle loading in surface waters and/or overprint by a cold-biased terrestrial TEX86 signal. As such the offshore TEX86 values seem to reflect a true summer signal to the effect that offshore UK'37 and TEX86 reconstruct winter and summer temperature, respectively, and hence provide information on the annual temperature amplitude.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the delivery of terrestrial organic carbon (OC) to the Amazon shelf and deep sea fan based on soil marker bacteriohopanepolyols (BHPs; adenosylhopane and related compounds) and branched glycerol dialkyl glycerol tetraethers (GDGTs), as well as on 14C dating of bulk organic matter. The microbial biomarker records show persistent burial of terrestrial OC, evidenced by almost constant and high BIT values (0.6) and soil marker BHP concentration [80-230 µg/g TOC (total OC)] on the late Holocene shelf and even higher BIT values (0.8-0.9), but lower and more variable soil-marker BHP concentration (40-100 µg/g TOC), on the past glacial deep sea fan. Radiocarbon data show that OC on the shelf is 3-4 kyr older than corresponding bivalve shells, emphasizing the presence of old carbon in this setting. We observe comparable and unexpectedly invariant BHP composition in both marine sediment records, with a remarkably high relative abundance of C-35 amino BHPs including compounds specific for aerobic methane oxidation on the shelf (avg. 50% of all BHPs) and the fan (avg. 40%). Notably, these marine BHP signatures are strikingly similar to those of a methane-producing floodplain area in one of the Amazonian wetland (várzea) regions. The observation indicates that BHPs in the marine sediments may have initially been produced within wetland regions of the Amazon basin and may therefore document persistent export from terrestrial wetland regions, with subsequent re-working in the marine environment, both during recent and past glacial climate conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hide Intense debate persists about the climatic mechanisms governing hydrologic changes in tropical and subtropical southeast Africa since the Last Glacial Maximum, about 20,000 years ago. In particular, the relative importance of atmospheric and oceanic processes is not firmly established. Southward shifts of the intertropical convergence zone (ITCZ) driven by high-latitude climate changes have been suggested as a primary forcing, whereas other studies infer a predominant influence of Indian Ocean sea surface temperatures on regional rainfall changes. To address this question, a continuous record representing an integrated signal of regional climate variability is required, but has until now been missing. Here we show that remote atmospheric forcing by cold events in the northern high latitudes appears to have been the main driver of hydro-climatology in southeast Africa during rapid climate changes over the past 17,000 years. Our results are based on a reconstruction of precipitation and river discharge changes, as recorded in a marine sediment core off the mouth of the Zambezi River, near the southern boundary of the modern seasonal ITCZ migration. Indian Ocean sea surface temperatures did not exert a primary control over southeast African hydrologic variability. Instead, phases of high precipitation and terrestrial discharge occurred when the ITCZ was forced southwards during Northern Hemisphere cold events, such as Heinrich stadial 1 (around 16,000 years ago) and the Younger Dryas (around 12,000 years ago), or when local summer insolation was high in the late Holocene, i.e., during the last 4,000 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sedimentary extractable organic matter was analyzed at three ODP Leg 104 sites in the Norwegian Sea. Organic carbon content ranged from less than 0.1% to a maximum of 1.8%. Extractable organic matter content and unresolved complex mixture concentrations were low and randomly distributed. Low levels of aliphatic (branched and normal) and aromatic hydrocarbons were detected in all of the sediments analyzed. Total aliphatic and aromatic hydrocarbon concentrations ranged from 176 to 3,214 and 6 to 820 ppb, respectively. The concentrations of individual aliphatic (n-C15 to n-C32) and aromatic (two- to five-ring) hydrocarbons were generally less than 50 ppb and less than 10 ppb, respectively. No significant trend with sub-bottom depth was observed in either bulk organic matter or individual hydrocarbon concentrations. The predominant source of Cenozoic sedimentary hydrocarbons is concluded to be ice-rafted debris from the adjacent continent. All sites contain a mixture of recycled, mature petroleum-related and terrestrially derived hydrocarbons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are serious concerns that ocean acidification will combine with the effects of global warming to cause major shifts in marine ecosystems, but there is a lack of field data on the combined ecological effects of these changes due to the difficulty of creating large-scale, long-term exposures to elevated CO2 and temperature. Here we report the first coastal transplant experiment designed to investigate the effects of naturally acidified seawater on the rates of net calcification and dissolution of the branched calcitic bryozoan Myriapora truncata (Pallas, 1766). Colonies were transplanted to normal (pH 8.1), high (mean pH 7.66, minimum value 7.33) and extremely high CO2 conditions (mean pH 7.43, minimum value 6.83) at gas vents off Ischia Island (Tyrrhenian Sea, Italy). The net calcification rates of live colonies and the dissolution rates of dead colonies were estimated by weighing after 45 days (May-June 2008) and after 128 days (July-October) to examine the hypothesis that high CO2 levels affect bryozoan growth and survival differently during moderate and warm water conditions. In the first observation period, seawater temperatures ranged from 19 to 24 °C; dead M. truncata colonies dissolved at high CO2 levels (pH 7.66), whereas live specimens maintained the same net calcification rate as those growing at normal pH. In extremely high CO2 conditions (mean pH 7.43), the live bryozoans calcified significantly less than those at normal pH. Therefore, established colonies of M. truncata seem well able to withstand the levels of ocean acidification predicted in the next 200 years, possibly because the soft tissues protect the skeleton from an external decrease in pH. However, during the second period of observation a prolonged period of high seawater temperatures (25-28 °C) halted calcification both in controls and at high CO2, and all transplants died when high temperatures were combined with extremely high CO2 levels. Clearly, attempts to predict the future response of organisms to ocean acidification need to consider the effects of concurrent changes such as the Mediterranean trend for increased summer temperatures in surface waters. Although M. truncata was resilient to short-term exposure to high levels of ocean acidification at normal temperatures, our field transplants showed that its ability to calcify at higher temperatures was compromised, adding it to the growing list of species now potentially threatened by global warming.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coralline algae are major calcifiers of significant ecological importance in marine habitats but are among the most sensitive calcifying organisms to ocean acidification. The elevated pCO2 effects were examined in three coralline algal species living in contrasting habitats from intertidal to subtidal zones on the north-western coast of Brittany, France: (i) Corallina elongata, a branched alga found in tidal rock pools, (ii) Lithophyllum incrustans, a crustose coralline alga from the low intertidal zone, and (iii) Lithothamnion corallioides (maerl), a free-living form inhabiting the subtidal zone. Metabolic rates were assessed on specimens grown for one month at varying pCO2: 380 (current pCO2), 550, 750 and 1000 µatm (elevated pCO2). There was no pCO2 effect on gross production in C. elongata and L. incrustans but L. incrustans respiration strongly increased with elevated pCO2. L. corallioides gross production slightly increased at 1000 µatm, while respiration remained unaffected. Calcification rates decreased with pCO2 in L. incrustans (both in the light and dark) and L. corallioides (only in the light), while C. elongata calcification was unaffected. This was consistent with the lower skeletal mMg/Ca ratio of C. elongata (0.17) relative to the two other species (0.20). L. incrustans had a higher occurrence of bleaching that increased with increasing pCO2. pCO2 could indirectly impact this coralline species physiology making them more sensitive to other stresses such as diseases or pathogens. These results underlined that the physiological response of coralline algae to near-future ocean acidification is species-specific and that species experiencing naturally strong pH variations were not necessarily more resistant to elevated pCO2 than species from more stable environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mid-Cretaceous is thought to be a greenhouse world with significantly higher atmospheric pCO2 and sea-surface temperatures as well as a much flatter latitudinal thermal gradient compared to the present. This time interval was punctuated by the Cenomanian/Turonian Oceanic Anoxic Event (OAE-2, ~ 93.5 Myr ago), an episode of global, massive organic carbon burial that likely resulted in a large and abrupt pCO2 decline. However, the climatic consequences of this pCO2 drop are yet poorly constrained. We determined the first, high-resolution sea-surface temperature (SST) record across OAE-2 from a deep-marine sedimentary sequence at Ocean Drilling Program (ODP) Site 1276 in the mid-latitudinal Newfoundland Basin, NW Atlantic. By employing the organic palaeothermometer TEX86, we found that SSTs across the OAE-2 interval were extremely high, but were punctuated by a remarkably large cooling (5-11 °C), which is synchronous with the 2.5-5.5 °C cooling in SST records from equatorial Atlantic sites, and the "Plenus Cold Event". Because this global cooling event is concurrent with increased organic carbon burial, it likely acted in response to the associated pCO2 drop. Our findings imply a substantial increase in the latitudinal SST gradient in the proto-North Atlantic during this period of global cooling and reduced atmospheric pCO2, suggesting a strong coupling between pCO2 and latitudinal thermal gradients under greenhouse climate conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we present a unique high-resolution Holocene record of oceanographic and climatic change based on analyses of diatom assemblages combined with biomarker data from a sediment core collected from the Vega Drift, eastern Antarctic Peninsula (EAP). These data add to the climate framework already established by high-resolution marine sedimentary records from the Palmer Deep, western Antarctic Peninsula (WAP). Heavy sea ice conditions and reduced primary productivity were observed prior to 7.4 ka B.P. in relation with the proximity of the glacial ice melt and calving. Subsequent Holocene oceanographic conditions were controlled by the interactions between the Westerlies-Antarctic Circumpolar Current (ACC)-Weddell Gyre dynamics. A warm period characterized by short seasonal sea ice duration associated with a southern shift of both ACC and Westerlies field persisted until 5 ka B.P. This warm episode was then followed by climate deterioration during the middle-to-late Holocene (5 to 1.9 ka B.P.) with a gradual increase in annual sea ice duration triggered by the expansion of the Weddell Gyre and a strong oceanic connection from the EAP to the WAP. Increase of benthic diatom species during this period was indicative of more summer/autumn storms, which was consistent with changes in synoptic atmospheric circulation and the establishment of low- to high-latitude teleconnections. Finally, the multicentennial scale variability of the Weddell Gyre intensity and storm frequency during the late Holocene appeared to be associated with the increased El Niño-Southern Oscillation frequency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The MBT-CBT proxy for the reconstruction of paleotemperatures and past soil pH is based on the distribution of branched glycerol dialkyl glycerol tetraether (brGDGT) membrane lipids. The Methylation of Branched Tetraether (MBT) and the Cyclisation of Branched Tetraether (CBT) indices were developed to quantify these distributions, and significant empirical relations between these indices and annual mean air temperature (MAT) and/or soil pH were found in a large data set of soils. In this study, we extended this soil dataset to 278 globally distributed surface soils. Of these soils, 26% contains all nine brGDGTs, while in 63% of the soils the seven most common brGDGTs were detected, and the latter were selected for calibration purposes. This resulted in new transfer functions for the reconstruction of pH based on the CBT index: pH = 7.90-1.97 × CBT (r**2 = 0.70; RMSE = 0.8; n = 176), as well as for MAT based on the CBT index and methylation index based on the seven most abundant GDGTs (defined as MBT'): MAT = 0.81-5.67 × CBT + 31.0 × MBT' (r**2 = 0.59; RMSE = 5.0 °C; n = 176). The new transfer function for MAT has a substantially lower correlation coefficient than the original equation (r**2 = 0.77). To investigate possible improvement of the correlation, we used our extended global surface soil dataset to statistically derive the indices that best describe the relations of brGDGT composition with MAT and soil pH. These new indices, however, resulted in only a relatively minor increase in correlation coefficients, while they cannot be explained straightforwardly by physiological mechanisms. The large scatter in the calibration cannot be fully explained by local factors or by seasonality, but MAT for soils from arid regions are generally substantially (up to 20 °C) underestimated, suggesting that absolute brGDGT-based temperature records for these areas should be interpreted with caution. The applicability of the new MBT'-CBT calibration function was tested using previously published MBT-CBT-derived paleotemperature records covering the last deglaciation in Central Africa and East Asia, the Eocene-Oligocene boundary and the Paleocene-Eocene thermal maximum. The results show that trends remain similar in all records, but that absolute temperature estimates and the amplitude of temperature changes are lower for most records, and generally in better agreement with independent proxy data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A substantial extinction of megafauna occurred in Australia between 50 and 45 kyr ago, a period that coincides with human colonization of Australia. Large shifts in vegetation also occurred around this time, but it is unclear whether the vegetation changes were driven by the human use of fire-and thus contributed to the extinction event-or were a consequence of the loss of megafaunal grazers. Here we reconstruct past vegetation changes in southeastern Australia using the stable carbon isotopic composition of higher plant wax n-alkanes and levels of biomass burning from the accumulation rates of the biomarker levoglucosan from a well-dated sediment core offshore from the Murray-Darling Basin. We find that from 58 to 44 kyr ago, the abundance of plants with the C-4 carbon fixation pathway was generally high-between 60 and 70%. By 43 kyr ago, the abundance of C-4 plants dropped to 30% and biomass burning increased. This transient shift lasted for about 3,000 years and came after the period of human arrival and directly followed megafauna extinction at 48.9-43.6 kyr ago. We conclude that the vegetation shift was not the cause of the megafaunal extinction in this region. Instead, our data are consistent with the hypothesis that vegetation change was the consequence of the extinction of large browsers and led to the build-up of fire-prone vegetation in the Australian landscape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twenty-four sediment samples from DSDP Holes 605 (Leg 93) and 613 (Leg 95) on the New Jersey continental rise were analyzed by pyrolysis-gas chromatography. Twelve of these samples were also analyzed by pyrolysis-gas chromatography/mass spectrometry. The degree of preservation of sediment organic matter, as determined by these techniques, helped to distinguish slumped sediments from sediments that have not moved from their original place of deposition. Total levels of pyrolyzable organic material, as determined from pyrolysis-gas chromatography, were low in sediments that were not slumped, indicating that the organic material is highly degraded. Nitrogen- and oxygen-containing compounds were the primary compounds detected by gas chromatography/mass spectrometry (GCMS) analysis of the pyrolyzate of non-slumped sediments. Smaller amounts of aromatic compounds and branched alkanes were also present in some of these samples. In contrast, slumped sediments showed larger amounts of pyrolyzable organic matter, as determined from pyrolysis-gas chromatography, and better preservation of alkyl chains in the sediment organic matter, as suggested by the presence of n-alkanes in GCMS analysis of the pyrolyzate. Better preservation of the organic matter in slumped sediments can be attributed to more moderate bioturbation by bottom-dwelling organisms at the original deposition site.