289 resultados para Accumulation by dispossession
Resumo:
Through scanning electron microscope analysis of sediment microfabric, we have evaluated variations in high-resolution shipboard physical properties (index properties and shear strength), sediment components (smear slide determinations), and shore-based calcium carbonate and biogenic silica data from Site 751 (Kerguelen Plateau). The stratigraphic section at this site records a change in biogenic ooze composition from predominantly calcareous (nannofossil) to siliceous (diatom) ooze from ~23 Ma to the present, reflecting expansion of Antarctic water masses during the late Neogene. The profound change in physical properties and sediment character at 40.1 mbsf (~5-6 Ma) evidently records the northward movement of the Polar Front and a change in absolute accumulation rates of sediment at this site. Trends in geotechnical properties with depth at Site 751 allowed us to subdivide the sedimentary column into a number of geotechnical units that reflect changes in depositional and postdepositional processes with time. Geotechnical properties are sensitive to changing sedimentary inputs of primarily siliceous and calcareous microfossils. This allows us to study the physical nature of biostratigraphically-identified hiatuses and variations in environmental conditions linked to the migration of the Polar Front across this region. The analysis of geotechnical properties permits a more detailed division of the sedimentary column than is possible from shipboard lithologic descriptions alone. Our study of the sedimentary microfabric indicates that randomly oriented, elongate pennate diatom valves compose the sediments with highest porosity and water content values, and the lowest density values (wet bulk, dry bulk, and grain density). Conversely, sediments composed of nannofossils and disassociated nannofossil crystallites and little or no siliceous remains have the lowest porosity and water content values, and the highest density values. Samples of mixed siliceous/calcareous composition have intermediate physical property values, but these vary according to the nature of the sedimentary matrix and the state of preservation of individual skeletal elements.
Resumo:
As a result of intensive field activities carried out by several nations over the past 15 years, a set of accumulation measurements for western Dronning Maud Land, Antarctica, was collected, based on firn-core drilling and snow-pit sampling. This new information was supplemented by earlier data taken from the literature, resulting in 111 accumulation values. Using Geographical Information Systems software, a first region-wide mean annual snow-accumulation field was derived. In order to define suitable interpolation criteria, the accumulation records were analyzed with respect to their spatial autocorrelation and statistical properties. The resulting accumulation pattern resembles well known characteristics such as a relatively wet coastal area with a sharp transition to the dry interior, but also reveals complex topographic effects. Furthermore, this work identifies new high-return shallow drilling sites by uncovering areas of insufficient sampling density.
Resumo:
The European Programme for Ice Coring in Antarctica includes a comprehensive pre-site survey on the inland ice plateau of Dronning Maud Land, Antarctica. The German glaciological programme during the 1997/98 field season was carried out along a 1200 km traverse on Amundsenisen and involved sampling the snow cover in pits and by shallow firn cores. This paper focuses on the accumulation studies. The cores were dated by dielectric-profiling and continuous-flow analysis. Distinct volcanogenic peaks and seasonal signals in the profiles served to establish a depth time-scale. The eruptions of Krakatoa, Tambora, an unknown volcano, Kuwae and El Chichon are well-documented in the ice. Variations of the accumulation rates over different times were inferred from the depth time-scales. A composite record of accumulation rates for the last 200 years was produced by stacking 12 annually resolved records. According to this, accumulation rates decreased in the 19th century and increased in the 20th century. The recent values are by no means extraordinary, as they do not exceed the values at the beginning of the 19th century. Variations in accumulation rates are most probably linked to temperature variations indicated in d18O records from Amundsenisen.
Resumo:
Marked variations in the chemical and mineralogical composition of sediments at Site 319 have occurred during the 15 My history of sedimentation at this site. The change in composition through time parallels the variability observed in surface sediments from various parts of the Nazca Plate and can be related to variations in the proportion of hydrothermal, hydrogenous, detrital and biogenous phases reaching this site at different times. Metal accumulation rates at Site 319 reach a maximum near the basement for most elements, suggesting a strong hydrothermal contribution during the early history of this site. The hydrothermal contribution decreased rapidly as Site 319 moved away from the spreading center, although a subtle increase in this source is detectable about the time spreading began on the East Pacific Rise. The most recent sedimentation exhibits a strong detritalhydrogenous influence. Post-depositional diagenesis of amorphous phases has converted them to ironrich smectite and well-crystallized goethite without significantly altering the bulk composition of the sediment.