51 resultados para AK43-4880
Resumo:
The Toarcian Oceanic Anoxic Event (T-OAE) of the early Jurassic period involves one of the largest perturbations of the carbon cycle in the past 250 Ma, recorded by a pronounced negative carbon-isotope excursion (CIE). Numerous studies have focused on potential causes of the T-OAE and CIE, but are hampered by an uncertain timescale. Here we present high-resolution (~2 kyr) magnetic susceptibility (MS) measurements from the marine marls of the Sancerre-Couy drill-core, southern Paris Basin, spanning the entire Toarcian Stage. The MS variations document a rich series of sub-Milankovitch to Milankovitch frequencies (precession, obliquity and eccentricity) with the periodic g2-g5 (405 kyr) and quasi-periodic g4-g3 (~2.4 Myr Cenozoic mean periodicity) eccentricity terms being the most prominent. The MS-related g4-g3 variation reflects third-order eustatic sequences, and constrains the sequence stratigraphic framework of the Toarcian Stage. In addition, MS variations reveal a modulation of g2-g5 by g4-g3 eccentricity related cycles, suggesting that sea-level change was the main control on the deposition of the Toarcian Sancerre marls, in tune with the astro-climatic frequencies. The stable 405 kyr cyclicity constrains a minimum duration of the Toarcian Stage to ~8.3 Myr, and the well documented CIE, associated with the T-OAE, to ~300 to 500 kyr. The 405 kyr MS timescale calibrates the periodicity of the prominent high-frequency d13C cycles that occur in the decreasing part of the CIE to 30 to 34 kyr, consistent with the Toarcian obliquity period predicted for an Earth experiencing sustained tidal dissipation.
Resumo:
On the basis of a long term research of the authors a database model of grain size composition of unlithified marine and ocean bottom sediments has been created. An improved method of water-mechanical analysis has been offered. Grain size parameters of main types of bottom sediments have been measured and calculated. The genetic interpretation of results and regularities of sandy, aleuritic and pelitic material in basins of sedimentation are under discussion.
Resumo:
A compilation of 1118 surface sediment samples from the South Atlantic was used to map modern seafloor distribution of organic carbon content in this ocean basin. Using new data on Holocene sedimentation rates, we estimated the annual organic carbon accumulation in the pelagic realm (>3000 m water depth) to be approximately 1.8*10**12 g C/year. In the sediments underlying the divergence zone in the Eastern Equatorial Atlantic (EEA), only small amounts of organic carbon accumulate in spite of the high surface water productivity observed in that area. This implies that in the Eastern Equatorial Atlantic, organic carbon accumulation is strongly reduced by efficient degradation of organic matter prior to its burial. During the Last Glacial Maximum (LGM), accumulation of organic carbon was higher than during the mid-Holocene along the continental margins of Africa and South America (Brazil) as well as in the equatorial region. In the Eastern Equatorial Atlantic in particular, large relative differences between LGM and mid-Holocene accumulation rates are found. This is probably to a great extent due to better preservation of organic matter related to changes in bottom water circulation and not just a result of strongly enhanced export productivity during the glacial period. On average, a two- to three-fold increase in organic carbon accumulation during the LGM compared to mid-Holocene conditions can be deduced from our cores. However, for the deep-sea sediments this cannot be solely attributed to a glacial productivity increase, as changes in South Atlantic deep-water circulation seem to result in better organic carbon preservation during the LGM.