48 resultados para AFLP - Age structure


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The age correlation between the three main geomorphological terraces in the Lena Delta, especially that of the second sandy terrace (Arga Island) and the third terrace (Ice Complex and underlying sands) is still being discussed, Knowledge about the age of the lee Complex and its underlying sands, and the Arga sands is necessary for understanding the past and modern structure of the delta. Geochronometrie data have been acguired for three sediment seguences from the Lena Delta by lumineseence dating using the potassium feldspar IR-OSL technique. Additionally, 14C dates are available for geochronological discussion. Typical sediments of the upper part of Arga Island as found in the area of Lake Nikolay are of Late Pleistoeene age (14.5-10.9 ka), Typical third terrace sediments from two seguenees located at the Olenyokskaya branch are older. At the profile "Nagym" sandy seguences were most probably deposited between about 65 ka and 50 ka before present. The lower part of the sandy seguence at "Kurungnakh Island" is possibly older than the sediments of the section at Nagym. However, methodological difficulties in luminescence dating (insufficient bleaching at the time of deposition) and younger 14C dates make the discussion of the results difficult.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ix Ocean Drilling Program (ODP) sites, in the Northwest Atlantic have been used to investigate kinematic and chemical changes in the "Western Boundary Undercurrent" (WBUC) during the development of full glacial conditions across the Marine Isotope Stage 5a/4 boundary (~70,000 years ago). Sortable silt mean grain size(sort s) measurements are employed to examine changes in near bottom flow speeds, together with carbon isotopes measured in benthic foraminifera and % planktic foraminiferal fragmentation as proxies for changes in water-mass chemistry. A depth transect of cores, spanning 1.8-4.6 km depth, allows changes in both the strength and depth of the WBUC to be constrained across millennial scale events. Sort s measurements reveal that the flow speed structure of the WBUC during warm intervals ("interstadials") was comparable to modern (Holocene) conditions. However, significant differences are observed during cold intervals, with higher relative flow speeds inferred for the shallow component of the WBUC (~2 km depth) during all cold "stadial" intervals (including Heinrich Stadial 6), and a substantial weakening of the deep component (~3-4 km) during full glacial conditions. Our results therefore reveal that the onset of full glacial conditions was associated with a regime shift to a shallower mode of circulation (involving Glacial North Atlantic Intermediate Water) that was quantitatively distinct from preceding cold stadial events. Furthermore, our chemical proxy data show that the physical response of the WBUC during the last glacial inception was probably coupled to basin-wide changes in the water-mass composition of the deep Northwest Atlantic.