224 resultados para 982.83


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stockwork-like metal sulfide mineralizations were found at 910-928 m below seafloor (BSF) in the pillow/dike transition zone of Hole 504B. This is the same interval where most physical properties of the 5.9-m.y.-old crust of the Costa Rica Rift change from those characteristic of Layer 2B to those of Layer 2C. The pillow lavas, breccias, and veins of the stockwork-like zone were studied by transmitted and reflected light microscopy, X-ray diffraction, and electron microprobe analysis. Bulk rock oxygen isotopic analyses as well as isolated mineral oxygen and sulfur isotopic analyses and fluid inclusion measurements were carried out. A complex alteration history was reconstructed that includes three generations of fissures, each followed by precipitation of characteristic hydrothermal mineral parageneses: (1) Minor and local deposition of quartz occurred on fissure walls; adjacent wall rocks were silicified, followed by formation of chlorite and minor pyrite I in the veins, whereas albite, sphene, chlorite and chlorite-expandable clay mixtures, actinolite, and pyrite replaced igneous phases in the host rocks. The hydrothermal fluids responsible for this first stage were probably partially reacted seawater, and their temperatures were at least 200-250° C. (2) Fissures filled during the first stage were reopened and new cracks formed. They were filled with quartz, minor chlorite and chlorite-expandable clay mixtures, traces of epidote, common pyrite, sphalerite, chalcopyrite, and minor galena. During the second stage, hydrothermal fluids were relatively evolved metal- and Si-rich solutions whose temperatures ranged from 230 to 340° C. The fluctuating chemical composition and temperature of the solutions produced a complex depositional sequence of sulfides in the veins: chalcopyrite I, ± Fe-rich sphalerite, chalcopyrite II ("disease"), Fe-poor sphalerite, chalcopyrite III, galena, and pyrite II. (3) During the last stage, zeolites and Mg-poor calcite filled up the remaining spaces and newly formed cracks and replaced the host rock plagioclase. Analcite and stilbite were first to form in veins, possibly at temperatures below 200°C; analcite and earlier quartz were replaced by laumontite at 250°C, whereas calcite formation temperature ranged from 135 to 220°C. The last stage hydrothermal fluids were depleted in Mg and enriched in Ca and 18O compared to seawater and contained a mantle carbon component. This complex alteration history paralleling a complex mineral paragenesis can be interpreted as the result of a relatively long-term evolution of a hydrothermal system with superimposed shorter term fluctuations in solution temperature and composition. Hydrothermal activity probably began close to the axis of the Costa Rica Rift with the overall cooling of the system and multiple fracturing stages due to movement of the crust away from the axis and/or cooling of a magmatic heat source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cenozoic volcanic activity on Iceland has been recorded in North Atlantic sediments drilled during several Ocean Drilling Program (ODP)/Deep Sea Drilling Project legs (Legs 104, 151, 152, 162, and 163). Leg 162 (North Atlantic-Arctic Gateways II) recovered ash layers at Sites 982, 985, and 907 (Jansen, Raymo, Blum, et al., 1996, doi:10.2973/odp.proc.ir.162.1996). The revisited Site 907 was first drilled during Leg 151, and the ash from this site has been described in detail by Lacasse et al. (1996, doi:10.2973/odp.proc.sr.151.122.1996) and Werner et al. (1996, doi:10.2973/odp.proc.sr.151.123.1996). Site 982 is located within the Hatton-Rockall Basin on the Rockall Plateau, which is situated west of the British Isles. Site 985 is located northeast of Iceland at the foot of the eastern slope of the Iceland Plateau, adjacent to the Norwegian Basin. Here we report chemical analyses of Neogene tephra layers from Holes 982A, 983B, 982C, 985A, and 985B. The sedimentary sequence at Site 982 spans the lower Miocene-Holocene; Site 985 recovered sediments spanning the upper Oligocene-Holocene. Twenty-two distinct ash layers and ash-bearing sediments were sampled in Holes 982A-982C (Cores 162-982A-16H through 24H, 162-982B-14H through 56X, and 162-982C-15H through 27H), and 59 ash layers were sampled in Holes 985A and 985B (Cores 162-985A-11H through 59X, and 162-985B-11H through 14H). Almost 50% of the sampled ash is strongly altered (predominantly from Site 985). A cluster of altered thin layers in the lower Pliocene of Site 985 (top of Unit III) is remarkable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetization of four breccia samples from the Leg 83 section of DSDP Hole 504B was analyzed by selective destructive demagnetization in order to study the origin and stability of hydrothermally altered basalts. The NRM directions of the clasts for three of the four samples are randomly oriented and much more strongly magnetized than the bulk sample. Clasts which were individually demagnetized show two or more components of magnetization, but neither are coincident with those of the bulk sample, indicating that NRM was probably acquired prior to the consolidation of the breccia and suggesting that any overprint (VRM or otherwise) can be removed by AF demagnetization to at most 50 Oe. Reflected light microscopy and electron microprobe analysis of two samples show that the unexpectedly high NRM of the matrix regions is apparently the result of secondary magnetic phases precipitated from hydrothermal solutions.