195 resultados para 982
Resumo:
Based on combined microsensor measurements of irradiance, temperature and O2, we compared light energy budgets in photosynthetic microbial mats, with a special focus on the efficiency of light energy conservation by photosynthesis. The euphotic zones in the three studied mats differed in their phototrophic community structure, pigment concentrations and thickness. In all mats, < 1% of the absorbed light energy was conserved via photosynthesis at high incident irradiance, while the rest was dissipated as heat. Under light-limiting conditions, the photosynthetic efficiency reached a maximum, which varied among the studied mats between 4.5% and 16.2% and was significantly lower than the theoretical maximum of 27.7%. The maximum efficiency correlated linearly with the light attenuation coefficient and photopigment concentration in the euphotic zone. Higher photosynthetic efficiency was found in mats with a thinner and more densely populated euphotic zone. Microbial mats exhibit a lower photosynthetic efficiency compared with ecosystems with a more open canopy-like organization of photosynthetic elements, where light propagation is not hindered to the same extent by photosynthetically inactive components; such components contributed about 40-80% to light absorption in the investigated microbial mats, which is in a similar range as in oceanic planktonic systems.
Resumo:
During Cruise 54 of R/V Akademik Mstislav Keldysh macrobenthos of the Novaya Zemlya Trough was studied with use of a Sigsby trawl along a submeridional transect near 75°30'N at depth range from 68 to 362 m. In total 140 species of bottom animals were found. Relative role of taxons was assessed using three parameters: abundance, biomass, and energy flow. Similarity of the parameters was used for comparison of samples. New material greatly contributes to data on composition of fauna and structure of communities of the studied region. It was revealed that small scyphozoid polyps and sipunculoids play an important role in the trough's community. Presence of a community dominated by Ophiocten sericeum (with important role of small bivalves) was revealed for the first time not only at the eastern by also at the western slope of the Novaya Zemlya Trough. The sharpest changes in composition and structure of the bottom community were confined to a zone of transition from the trough floor to the slope. These changes are determined by specificity of the macrorelief (of the floor and slope), composition of ground (soft brown silts abound in rhizopods and dense gray silts with admixture of pebbles), and possibly by hydrodynamic processes near the bottom.
Resumo:
We reconstruct paleoproductivity at three sites in the Atlantic Ocean (Ocean Drilling Program Sites 982, 925, and 1088) to investigate the presence and extent of the late Miocene to early Pliocene 'biogenic bloom' from 9 to 3 Ma. Our approach involves construction of multiple records including benthic foraminiferal and CaCO3 accumulation rates, Uvigerina counts, dissolution proxies, and geochemical tracers for biogenic and detrital fluxes. This time interval also contains the so-called late Miocene carbon isotope shift, a well-known decrease in benthic foraminiferal d13C values. We find that the timing of paleoproductivity maxima differs among the three sites. At Site 982 (North Atlantic), benthic foraminifera and CaCO3 accumulation were both at a maximum at ~5 Ma, with smaller peaks at ~6 Ma. The paleoproductivity maximum was centered earlier (~6.6-6.0 Ma) in the tropical Atlantic (Site 925). In the South Atlantic (Site 1088), paleoproductivity increased even earlier, between 8.2 Ma and 6.2 Ma, and remained relatively high until ~5.4 Ma. We note that there is some overlap between the interval of maximum productivity between Sites 925 and 1088, as well as the minor productivity increase at Site 982. We conclude that the paleoproductivity results support hypotheses aiming to place the biogenic bloom into a global context of enhanced productivity. In addition, we find that at all three sites the d13C shift is accompanied by carbonate dissolution. This observation is consistent with published studies that have sought a relationship between the late Miocene carbon isotope shift and carbonate preservation.
Resumo:
Oxygen and carbon isotope records are presented for the benthic foraminifer Cibicidoides wuellerstorfi from upper middle through lower upper Miocene (11.6-8.2 Ma) sediments recovered at intermediate water depth (1134 m) at Ocean Drilling Program Site 982 on Rockall Plateau. Oxygen isotopic values generally lighter than those for the Holocene indicate significantly warmer intermediate waters and/or less global ice volume during the late middle to early late Miocene than at the present. The most depleted oxygen isotope values occurred at around 10.5 Ma. After this time a long-term increase in d18O suggests a gradual increase in global ice volume and/or cooling of intermediate waters during the late Miocene. Comparison of the intermediate depth benthic foraminiferal carbon isotope record from Site 982 and records from various North Atlantic deep sites shows that intermediate waters were generally better ventilated than deep waters between 11.6 and 9.6 Ma. During this time period, increased ventilation of intermediate waters was linked to cooling or the build up of polar ice caps. The Mi events originally proposed by Miller et al. (1991, doi:10.1029/90JB02015) and Wright and Miller (1992, doi:10.2973/odp.proc.sr.120.193.1992) are difficult to identify with certainty in sediments sampled at high resolution (<10**4 year). Comparison of the high-resolution benthic d18O records from ODP Site 982 with the low-resolution benthic d18O record from Monte Gibliscemi (Mediterranean) show that Mi events, if real, may not be of importance as a stratigraphic tool in upper Miocene sedimentary sequences.