219 resultados para 79-544A
Resumo:
Stable Cl isotope ratios, measured in marine pore waters associated with the Barbados and Nankai subduction zones, extend significantly (to ~-8 per mil) the range of d37Cl values reported for natural waters. These relatively large negative values, together with geologic and chemical evidence from Barbados and Nankai and recent laboratory data showing that hydrous silicate minerals (i.e., those with structural OH sites) are enriched up to 7.5 per mil in 37Cl relative to seawater, strongly suggest that the isotopic composition of Cl in pore waters from subduction zones reflects diagenetic and metamorphic dehydration and transformation reactions. These reactions involve clays and/or other hydrous silicate phases at depth in the fluid source regions. Chlorine therefore cannot be considered geochemically conservative in these systems. The uptake of Cl by hydrous phases provides a mechanism by which Cl can be cycled into the mantle through subduction zones. Thus, stable Cl isotopes should help in determining the extent to which Cl and companion excess volatiles like H2O and CO2 cycle between the crust and mantle.
Resumo:
At Site 546, below the Mazagan Escarpment at a water depth of 4 km, 36 m of salt rock was cored from the top of one of a field of salt domes. The core was studied by thin section and a variety of geochemical procedures. The salt rock contains 0.1 to 3% carnallite and lesser amounts of sylvite and polyhalite, which with the corresponding high level of bromide place it within the potash evaporite facies. The bromide profile is of a dominantly marine evaporite deposited in moderately shallow brine which, however, was not repeatedly desiccated. A mineralogical argument suggests that the brine surface was not below sea level. An average of about 5% elastics, with dispersed anhydrite, darken the salt rock to deep shades of red, brown, and gray green. Most of the included materials are in highly deformed boudins or dispersions in the salt rock that has also undergone cataclasis in a subsequent, probably tectonic, deformation. The salt rock is slightly deficient in anhydrite, and the usual separate beds and laminae of anhydrite are virtually absent. Stable isotope ratios of sulfur and oxygen in the sulfate are clearly derived from sea water of Permian to Scythian age, in contrast to the late Triassic or Early Jurassic age of evaporites onshore in Morocco and Portugal and the corresponding evaporites offshore Maritime Canada. In contrast to those evaporites off the axis of Atlantic rifting, the salt at Site 546 may have been deposited in a very early central rift fed by marine waters from Tethys through the Gibraltar or South Atlas fracture zones.
Resumo:
Laminated sediments deposited under anoxic bottom waters in the Japan Sea during the last glacial maximum (LGM) contain extremely well preserved calcareous microfossils and eolian carbonates. The radiocarbon age-difference between bulk sediment and monospecific planktonic foraminifera in discrete laminae from a core in the southern Japan Sea implies that ~40% of the total carbonates in the sediments at the LGM are of eolian origin. Extrapolation of this result yields a rate of supply of eolian carbonates of ~2800 tons/d to the entire Japan Sea during the LGM. The climatic significance of this flux potentially lies in its broader geographic extension, particularly in the interaction of the carbonate-bearing dust with shallow, corrosive North Pacific waters and with rain in the atmosphere. By increasing the alkalinity of such waters and by enhancing the biological pump the dust flux could have increased CO2 absorption by both the ocean and rain during the LGM.