425 resultados para 64-474A


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Pliocene-Quaternary sediments that we drilled at eight sites in the Gulf of California consist of silty clays to clayey silts, diatomaceous oozes, and mixtures of both types. In this chapter I have summarized various measurements of their physical properties, relating this information to burial depth and effective overburden pressure. Rapid deposition and frequent intercalations of mud turbidites may cause underconsolidation in some cases; overconsolidation probably can be excluded. General lithification begins at depths between 200 and 300 meters sub-bottom, at porosities between 55 and 60% (for silty clays) and as high as 70% (for diatomaceous ooze). Diatom-rich sediments have low strength and very high porosities (70-90%) and can maintain this state to a depth of nearly 400 meters (where the overburden pressure = 1.4 MPa). The field compressibility curves of all sites are compared to data published earlier. Where sediments are affected by basaltic sills, these curves clearly show the effects of additional loading and thermal stress (diagenesis near the contacts). Strength measurements on well-preserved hydraulic piston cores yielded results similar to those obtained on selected samples from standard drilling. Volumetric shrinkage dropped to low values at 100 to 400 meters burial depth (0.3 to 2.0 MPa overburden pressure). Porosity after shrinkage depends on the composition of sediments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Studies of the nature and amount of dissolved organic matter (DOM) in pore-water solutions have been confined mostly to recent sediments (Henrichs and Farrington, 1979; Krom and Sholkovitz, 1977; Nissenbaum et al., 1972). The analyses of organic constituents in interstitial waters have not been extended to sediment depths of more than 15 meters (Starikova, 1970). Large fluctuations in organic contents of near-bottom interstitial fluids suggest that organic compounds may provide insight into the chemical and biological processes occurring in the sedimentary column. Gradients in inorganic ion concentrations have been used as indicators of diagenesis of organic matter in deep sediments and interstitial waters. Shishkina (1978) attributed the occurrence of iodine and Cl/Br ratios that deviated from the value of seawater to the breakdown of organic matter and the liberation of bromide during mineralization. Sulfate depletion and maxima in ammonia concentrations were interpreted to be a consequence of sulfate reduction reactions in pore fluids, even at depths of more than 400 meters (Miller et al., 1979; Manheim and Schug, 1978).The purpose of this chapter is to study organic carbon compounds dissolved in interstitial waters of deep sediments at Sites 474 and 479.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pleisto-Pliocene hemipelagic and diatomaceous mud was recovered from Deep Sea Drilling Project (DSDP) Sites 474 through 481 in the Gulf of California. The organic matter is mostly marine and mainly derived from diatomaceous protoplasm. We found some continental organic matter in sediments near the bottom basalts or near dolerites (Holes 474A and 478). The organic matter in most of the samples is in an early stage of evolution.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

I received five unoriented samples of igneous rocks from four Sites of Leg 64 of the Deep Sea Drilling Project (DSDP). I have measured several magnetic properties, alkalis (K, Rb, and Cs), alkaline-earth (Ba and Sr) element concentrations, and 87Sr/86Sr ratios of these samples. This study reports the results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The book is devoted to fundamental problems of organic geochemistry of ocean sediments. It is based on materials of organic matter and gas studies in cores from DSDP Legs 50 and 64. Experimental results obtained in the Laboratory of Carbon Geochemistry (V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Moscow) take the main part of the book. Evolution of organic matter in specific environment of deep ocean sediments, sources of organic matter in the ocean and methods of their identification based on isotopic analysis and other methods are under discussion. Gas geochemistry in normal conditions of diagenesis, and in conditions under intense heating is studied.

Relevância:

70.00% 70.00%

Publicador: