284 resultados para 587


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An integrated instrument package for measuring and understanding the surface radiation budget of sea ice is presented, along with results from its first deployment. The setup simultaneously measures broadband fluxes of upwelling and downwelling terrestrial and solar radiation (four components separately), spectral fluxes of incident and reflected solar radiation, and supporting data such as air temperature and humidity, surface temperature, and location (GPS), in addition to photographing the sky and observed surface during each measurement. The instruments are mounted on a small sled, allowing measurements of the radiation budget to be made at many locations in the study area to see the effect of small-scale surface processes on the large-scale radiation budget. Such observations have many applications, from calibration and validation of remote sensing products to improving our understanding of surface processes that affect atmosphere-snow-ice interactions and drive feedbacks, ultimately leading to the potential to improve climate modelling of ice-covered regions of the ocean. The photographs, spectral data, and other observations allow for improved analysis of the broadband data. An example of this is shown by using the observations made during a partly cloudy day, which show erratic variations due to passing clouds, and creating a careful estimate of what the radiation budget along the observed line would have been under uniform sky conditions, clear or overcast. Other data from the setup's first deployment, in June 2011 on fast ice near Point Barrow, Alaska, are also shown; these illustrate the rapid changes of the radiation budget during a cold period that led to refreezing and new snow well into the melt season.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediments recovered during Leg 90 (Sites 587-594, plus Site 586 cored during Leg 89) are, in general, extremely weakly magnetized carbonate oozes and chalks with NRM intensities seldom greater than 0.05 µG. The quality of the paleomagnetic records deteriorates with increasing depth caused by the combined effects of removal of primary magnetic oxides by sulfate reduction processes and the dispersal of magnetic grains during compaction. Magnetic reversal sequences are generally recognizable back to the Gilbert, 3.4 to 5.35 m.y., except at equatorial Site 586 where only the Brunhes/Matuyama boundary could be identified. Longer reversal records were obtained at Site 588 (to Chron 13, about 13 m.y.) and Site 594 (base of Chron 5, about 5.9 m.y.). Sediments are characterized by extremely high calcium carbonate contents (90-100%) with almost no biosiliceous components. Blebs and streaks of pyrite are common, and the presence of iron sulfides with poor magnetic stabilities is suspected, although not yet positively identified. Viscous components of magnetization are common, sometimes to the extent of dominating the primary remanence, and there is evidence to suggest that a magnetic remanence is imparted during core recovery. Siliceous carbonate oozes provide better paleomagnetic records than pure carbonate oozes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TEM (transmission electron microscopy) observations and microanalyses on smectite microparticles in the sediments of the CRP-2A core were carried out to determine their origin (authigenic or detrital) and the source rocks. Smectites are dioctahedral and are Fe-rich members of the nontronite-beidellite series. They generally display both flaky and hairy shapes, but no large compositional difference between the two forms was observed. Flaky smectites are detrital while hairy smectites probably formed in situ through the reorganisation of previous flaky particles. The source rocks for smectites are probably represented by the McMurdo Volcanic Group to the south, but also by the Ferrar Dolerites and Kirkpatrick Basalts in the Transantarctic Mountains. CRP-2A smectites are Fe and Mg richer than those of the coeval or not coeval levels of the CIROS-I, DSDP 270 and 274 cores. The average compositions of smectite in CRP-1 and CRP-2A cores show a downcore trend toward more alluminiferous terms, which might reflect the increase of the chemical weathering processes on the continent.