358 resultados para 567
Resumo:
The reconstruction of low-latitude ocean-atmosphere interactions is one of the major issues of (paleo-)environmental studies. The trade winds, extending over 20° to 30° of latitude in both hemispheres, between the subtropical highs and the intertropical convergence zone, are major components of the atmospheric circulation and little is known about their long-term variability on geological time-scales, in particular in the Pacific sector. We present the modern spatial pattern of eolian-derived marine sediments in the eastern equatorial and subtropical Pacific (10°N to 25°S) as a reference data set for the interpretation of SE Pacific paleo-dust records. The terrigenous silt and clay fractions of 75 surface sediment samples have been investigated for their grain-size distribution and clay-mineral compositions, respectively, to identify their provenances and transport agents. Dust delivered to the southeast Pacific from the semi- to hyper-arid areas of Peru and Chile is rather fine-grained (4-8 µm) due to low-level transport within the southeast trade winds. Nevertheless, wind is the dominant transport agent and eolian material is the dominant terrigenous component west of the Peru-Chile Trench south of ~ 5°S. Grain-size distributions alone are insufficient to identify the eolian signal in marine sediments due to authigenic particle formation on the sub-oceanic ridges and abundant volcanic glass around the Galapagos Islands. Together with the clay-mineral compositions of the clay fraction, we have identified the dust lobe extending from the coasts of Peru and Chile onto Galapagos Rise as well as across the equator into the doldrums. Illite is a very useful parameter to identify source areas of dust in this smectite-dominated study area.
Resumo:
At Sites 566, 567, and 570 of Leg 84, ophiolitic serpentinite basement was covered by a sequence of serpentinitic mud that was formed by weathering of the serpentinites under sea- or pore-water conditions. Several mineralogical processes were observed: (1) The serpentinitic mud that consists mainly of chrysotile was formed from the lizardite component of the serpentinites by alteration. (2) Slightly trioctahedral smectites containing nonexpandable mica layers, trioctahedral smectites containing nonexpandable chlorite layers, and swelling chlorites were presumably formed from detrital chlorite and/or serpentine. (3) The occurrence of tremolite, chlorite, analcime, and talc can be attributed to reworking of gabbroic ophiolite rocks. (4) Dolomite, aragonite, and Mg-calcite, all authigenic, occur in the serpentinitic mud.
Resumo:
Samples of Lower to middle Cretaceous rocks from ODP Sites 638, 640, and 641, drilled on the Galicia continental margin in the northeast Atlantic, have been investigated by organic geochemical methods (i.e., organic carbon determination, Rock-Eval pyrolysis, kerogen microscopy, gas chromatography, and gas chromatography/mass spectrometry) to define the Organofacies types and the depositional environments of these sediments. The results of this study fit well into the general picture drawn for the depositional history of the organic matter in Cretaceous organic-carbon-rich sediments in the North Atlantic from previous DSDP investigations. During the Valanginian to Albian, terrigenous organic carbon dominated the organic matter deposited on the Galicia continental margin. Cyclic changes in total organic carbon content were probably controlled by climatic-triggered changes in the supply of terrigenous organic matter from the nearby continent. A drastic change in depositional environment must have occurred near the Cenomanian/Turonian boundary. The preservation of large amounts of marine organic carbon in these sediments was probably caused by anoxic deep-water conditions during that time, rather than high productivity. All of the primary organic matter of the sediment samples investigated is thermally immature, as indicated by very low vitrinite reflectance values.