403 resultados para 54


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compositions of 45 natural basalt glasses from nine dredge stations and six Deep Sea Drilling Project Leg 54 sites near 9°N on the East Pacific Rise have been determined by electron microprobe. These comprise 19 distinct chemical groups. Seventeen of these fall in the range of the eastern Pacific tholeiite suite, which is characterized by marked enrichment in FeO*, TiO2, K2O, and P2O5 as CaO, MgO, and Al2O3 all decrease. Based on trace elements, an estimated 50-75 per cent fractionation of plagioclase, clinopyroxene, and olivine is required to produce ferrobasalts from parental olivine tholeiites. Additional chemical variations occur which require source heterogeneities, differences in the degree of melting, different courses of shallow fractionation, or magma mixing to explain. Glass compositions from within the Siqueiros fracture zone are mostly less fractionated than those from the flanks of the Rise, and show chemical differences which require variations in the depth of melting or highpressure fractionation to explain. Some of them could not be parental to East Pacific Rise flank ferrobasalts. Two remaining glass groups, from dredge hauls atop a ridge and a seamount, respectively, have distinctly higher K2O, P2O5, and TiO2 as well as lower CaO/Al2O3 and SiO2 at corresponding values of MgO than the tholeiite suite. These abundances, and whole-rock Y/Zr, Ce/Y, Nb/Zr, and isotopic abundances indicate that these basalts had a deeper, less depleted mantle source than the Rise tholeiite suite. Trace element abundances preclude the "ridge" basalt type from being a hybrid between the "seamount" basalt type and any East Pacific Rise tholeiite so far analyzed. The East Pacific Rise glasses from 9°N compare very closely to glasses dredged and drilled elsewhere on the East Pacific Rise. However, glass compositions from Site 424 on the Galapagos Rift drilled during Leg 54, as well as glasses and basalts dredged from the Galapagos and Costa Rica rifts, indicate that a greater degree of melting prevailed along much of the Galapagos Spreading Center than anywhere along the East Pacific Rise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of secondary minerals, formed in response to different oxidation and hydration states, are found in vugs and on fracture surfaces of the basalt cores from DSDP Leg 54. The minerals are smectite (blue to grey), high-magnesium calcite, manganoan calcite, aragonite, iron oxides, phillipsite, todorokite, marcasite, and hydrobiotite. The relationship of the mineral assemblages to four depositional modes of the basalts are delineated. A definite sequence and genetic link exists between mineral type and host rock which is dependent upon the origin and subsequent cooling history of the basalt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On Deep Sea Drilling Project Leg 54, we recovered upper Pliocene (Globigerinoides obliquus: PL6 zone) to Pleistocene sediments from the equatorial East Pacific Rise (EPR) and Galapagos spreading center (GSC). Progressively older sediments were drilled at increasing distances from the crest, with the exception of the sediment drilled in the deepest trough known in the Siqueiros fracture zone. The anomalous age obtained at the latter site suggests that the basalt which was drilled may represent fracture zone volcanism. Paleoenvironmental analysis using the planktonic foraminifers at the EPR sites indicated the presence of environmental cycles of shorter wave length during the interval from 0 to 0.24 Ma, whereas cycles of longer wave length occurred from 0.43 to 2.17 Ma. The planktonic foraminiferal taphocoenoses at the EPR sites were strongly affected by selective dissolution which indicated that these EPR sites have been near either the lysocline or carbonate compensation surface since the upper Pliocene. The planktonic foraminiferal thanatocoenoses at the GSC sites were preserved better than those at the EPR sites. The number of planktonic foraminiferal species generally was greatly reduced in the green mud associated with the GSC hydrothermal mounds. More species were found in older than in younger green mud; this suggests that there probably was an increase in the rate of production of green mud sometime after the initiation of the hydrothermal system.