59 resultados para 414
Resumo:
All norms were calculated with an atomic ratio of Fe+3/Fe+2 = 0.2, except analysis 7 which was calculated directly from the analysis.
Resumo:
The euphotic depth (Zeu) is a key parameter in modelling primary production (PP) using satellite ocean colour. However, evaluations of satellite Zeu products are scarce. The objective of this paper is to investigate existing approaches and sensors to estimate Zeu from satellite and to evaluate how different Zeu products might affect the estimation of PP in the Southern Ocean (SO). Euphotic depth was derived from MODIS and SeaWiFS products of (i) surface chlorophyll-a (Zeu-Chla) and (ii) inherent optical properties (Zeu-IOP). They were compared with in situ measurements of Zeu from different regions of the SO. Both approaches and sensors are robust to retrieve Zeu, although the best results were obtained using the IOP approach and SeaWiFS data, with an average percentage of error (E) of 25.43% and mean absolute error (MAE) of 0.10 m (log scale). Nevertheless, differences in the spatial distribution of Zeu-Chla and Zeu-IOP for both sensors were found as large as 30% over specific regions. These differences were also observed in PP. On average, PP based on Zeu-Chla was 8% higher than PP based on Zeu-IOP, but it was up to 30% higher south of 60°S. Satellite phytoplankton absorption coefficients (aph) derived by the Quasi-Analytical Algorithm at different wavelengths were also validated and the results showed that MODIS aph are generally more robust than SeaWiFS. Thus, MODIS aph should be preferred in PP models based on aph in the SO. Further, we reinforce the importance of investigating the spatial differences between satellite products, which might not be detected by the validation with in situ measurements due to the insufficient amount and uneven distribution of the data.
Resumo:
Recent advances in radiometric dating result in significant improvements in the geological timescale and provide better insight into the timing of various processes and evolutions within the Earth's system. However, no radiometric ages are contained within the Givetian. Consequently, the absolute ages of the Givetian Stage boundaries, as well as the stage's duration, remain poorly constrained. As an alternative, the analysis of sedimentary cycles allows for the estimation of the duration of this stage. We examined the high-resolution magnetic susceptibility signals of four Givetian outcrops in the Givet area for a possible astronomical imprint, to fully understand the rates of evolutionary and environmental change. All four sections are firmly correlated and wavelet analyses of the magnetic susceptibility signals reveal the imprint of astronomical eccentricity forcing. The highly stable 405 kyr cycles constrain the duration of the Givetian Stage at 4.35±0.45 Myr, which is in good agreement with the International Chronostratigraphic Chart (5.0 Myr). The studied sections also exhibit an imprint of obliquity, suggesting a climatic teleconnection between low and high latitudes. The corresponding microfacies curves demonstrate similar astronomical imprint, and thereby indicate that the observed 10**5 year-scale cyclicity is the result of climatic and environmental change.
Resumo:
The K-Ar ages from the basaltic rocks of Leg 134 range from Miocene to Holocene (Table 1). Samples were selected in consultation with shipboard scientists; choice of the material from the forearc sites was very limited and confined to clasts. There was a wider choice of material from the sill at Site 833 in the North Aoba Basin.