523 resultados para 184-1144A


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present high-resolution (2-3 kyr) benthic foraminiferal stable isotopes in a continuous, well-preserved sedimentary archive from the West Pacific Ocean (Ocean Drilling Program Site 1146), which track climate evolution in unprecedented resolution over the period 12.9 to 8.4 Ma. We developed an astronomically tuned chronology over this interval and integrated our new records with published isotope data from the same location to reconstruct long-term climate and ocean circulation development between 16.4 and 8.4 Ma. This extended perspective reveals that the long eccentricity (400 kyr) cycle is prominently encoded in the d13C signal over most of the record, reflecting long-term fluctuations in the carbon cycle. The d18O signal closely follows variations in short eccentricity (100 kyr) and obliquity (41 kyr). In particular, the obliquity cycle is prominent from ~14.6 to 14.1 Ma and from ~9.8 to 9.2 Ma, when high-amplitude variability in obliquity is congruent with low-amplitude variability in short eccentricity. The d18O curve is additionally characterized by a series of incremental steps at ~14.6, 13.9, 13.1, 10.6, 9.9, and 9.0 Ma, which we attribute to progressive deep water cooling and/or glaciation episodes following the end of the Miocene climatic optimum. On the basis of d18O amplitudes, we find that climate variability decreased substantially after ~13 Ma, except for a remarkable warming episode at ~10.8-10.7 Ma at peak insolation during eccentricity maxima (100 and 400 kyr). This transient warming, associated with a massive negative carbon isotope shift, is reminiscent of intense global warming events at eccentricity maxima during the Miocene climatic optimum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planktonic foraminiferal census counts were converted to sea surface temperature (SST) estimates using the modern analogue technique (MAT) for the middle-late Pliocene (4.0-2.37 Ma) in ODP Site 1125, north side of Chatham Rise, SW Pacific Ocean. MAT SST(warm) records range between 8°C and 20.5°C, and MAT SST(cold) records parallel that pattern but with a temperature range of 5-15°C. The modern position of Site 1125 is just north of the Subtropical Front and has an annual temperature range of ~14-18°C. Pliocene warmest temperatures are 1-2° warmer than modern summers, whereas cold season SST records are up to 6-10°C cooler than modern winters. Overall average temperatures at the site are 2-3°C cooler than modern temperatures during a time of sustained global warmth. Three major cold excursions centred on 3.35, 3.0, and 2.8 Ma showed warm season temperatures over 5°C colder than the last glacial maximum, experiencing temperatures typical of modern subantarctic waters. Two minor cold excursions at 2.7 Ma and 2.4 Ma experienced temperatures cooler than modern winters but not as cold as last glacial conditions. Cold season SSTs show a shift to warmer climate upward through the study interval, whereas warm season estimates remain essentially unchanged. We interpret the strong regional cooling of subtropical Southwest Pacific water through the middle-late Pliocene as having been caused by increased upwelling. It is also possible that the subtropical frontal zone moved north over the site in the Pliocene, however, this is considered the least likely interpretation. Our record of cool conditions in the Southwest Pacific corroborate evidence of cooler than modern conditions in other regions of the western Pacific through the mid-Pliocene despite overall global warming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sites 1147 (18°50.11'N, 116°33.28'E; water depth = 3246 m) and 1148 (18°50.17'N, 116°33.94'E; water depth = 3294 m) are located on the lowermost continental slope off southern China near the continent/ocean crust boundary of the South China Sea Basin. Site 1147 is located upslope ~0.45 nmi west of Site 1148. Three advanced piston corer holes at Site 1147 and two extended core barrel holes at Site 1148 were cored and combined into a composite (spliced) stratigraphic section, which provided a relatively continuous profile for the lower Oligocene to Holocene (Wang, Prell, Blum, et al., 2000, doi:10.2973/odp.proc.ir.184.2000; Jian, et al., 2001, doi:10.1007/BF02907088) for studying stratigraphy and paleoceanography. A total of 1047 planktonic foraminifers stable isotope measurements were performed on 975 samples covering the upper 409.58 meters composite depth (mcd) at ~42-cm intervals (Tables T1, T2), and a total of 1864 benthic foraminifers measurements were performed on 1650 samples in the upper 837.11 mcd at ~51-cm intervals (Tables T3, T4). We significantly improved the time resolution of the benthic stable isotope record in the upper 476.68 mcd by reducing the average sample spacing to ~29 cm. This translates into an average sampling resolution of ~16 k.y. for the Miocene sequence and ~8 k.y. for the Pliocene-Holocene interval, assuming a change in sedimentation rates from ~1.8 to ~3.5 cm/k.y., as suggested by shipboard stratigraphy. These data sets provide the basis for upcoming studies to establish an oxygen isotope stratigraphy and examine the Neogene evolution of deep and surface water signatures (temperature, salinity, and nutrients) in the South China Sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we present an improved astronomical timescale since 5 Ma as recorded in the ODP Site 1143 in the southern South China Sea, using a recently published Asian summer monsoon record (hematite to goethite content ratio, Hm/Gt) and a parallel benthic d18O record. Correlation of the benthic d18O record to the stack of 57 globally distributed benthic d18O records (LR04 stack) and the Hm/Gt curve to the 65°N summer insolation curve is a particularly useful approach to obtain refined timescales. Hence, it constitutes the basis for our effort. Our proposed modifications result in a more accurate and robust chronology than the existing astronomical timescale for the ODP Site 1143. This updated timescale further enables a detailed study of the orbital variability of low-latitude Asian summer monsoon throughout the Plio-Pleistocene. Comparison of the Hm/Gt record with the d18O record from the same core reveals that the oscillations of low-latitude Asian summer monsoon over orbital scales differed considerably from the glacial-interglacial climate cycles. The popular view that summer monsoon intensifies during interglacial stages and weakens during glacial stages appears to be too simplistic for low-latitude Asia. In low-latitude Asia, some strong summer monsoon intervals appear to have also occurred during glacial stages in addition to their increased occurrence during interglacial stages. Vice versa, some notably weak summer monsoon intervals have also occurred during interglacial stages next to their anticipated occurrence during glacial stages. The well-known mid-Pleistocene transition (MPT) is only identified in the benthic d18O record but not in the Hm/Gt record from the same core. This suggests that the MPT may be a feature of high- and middle-latitude climates, possibly determined by high-latitude ice sheet dynamics. For low-latitude monsoonal climate, its orbital-scale variations respond more directly to insolation and are little influenced by high-latitude processes, thus the MPT is likely not recorded. In addition, the Hm/Gt record suggests that low-latitude Asian summer monsoon intensity has a long-term decreasing trend since 2.8 Ma with increased oscillation amplitude. This long-term variability is presumably linked to the Northern Hemisphere glaciation since then.