52 resultados para 180123 Litigation Adjudication and Dispute Resolution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work in this sub-project of ESOP focuses on the advective and convective transforma-tion of water masses in the Greenland Sea and its neighbouring areas. It includes observational work on the sub-mesoscale and analysis of hydrographic data up to the gyre-scale. Observations of active convective plumes were made with a towed chain equipped with up to 80 CTD sensors, giving a horizontal and vertical resolution of the hydrographic fields of a few metres. The observed scales of the penetrative convective plumes compare well with those given by theory. On the mesoscale the structure of homogeneous eddies formed as a result of deep convection was observed and the associated mixing and renewal of the intermediate layers quantified. The relative importance and efficiency of thermal and haline penetrative convection in relation to the surface boundary conditions (heat and salt fluxes and ice cover) and the ambient stratification are studied using the multi year time series of hydro-graphic data in the central Greenland Sea. The modification of the water column of the Greenland Sea gyre through advection from and mixing with water at its rim is assessed on longer time scales. The relative contributions are quantified using modern water mass analysis methods based on inverse techniques. Likewise the convective renewal and the spreading of the Arctic Intermediate Water from its formation area is quantified. The aim is to budget the heat and salt content of the water column, in particular of the low salinity surface layer, and to relate its seasonal and interannual variability to the lateral fluxes and the fluxes at the air-sea-ice interface. This will allow to estimate residence times for the different layers of the Greenland Sea gyre, a quantity important for the description of the Polar Ocean carbon cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A reconstruction of northwest African summer monsoon strength during the cold marine isotopic stage (MIS) 6 indicates a link to the seasonal migration of the Intertropical Convergence Zone (ITCZ). High-resolution studies of eolian dust supply and sea surface temperature recorded in marine core MD03-2705, on the Mauritanian margin, provide a better understanding about the penultimate glacial history of northwestern African aridity/humidity and upwelling coastal activity. Today, site MD03-2705 experiences increased upwelling and dust flux during the winter months, when the ITCZ is in a southerly position. Analyses of foraminifera isotopic composition suggest that during MIS 6.5 (180-168 ka) the average position of the ITCZ migrated north, marked by an increase in the strength of the summer monsoon, which decreased eolian dust transport and the coastal upwelling activity. The northward migration is in phase with a specific orbital combination of a low precessional index with a high obliquity signal. High-resolution analysis of stable isotopes (d18O and d13C) and microscale resolution geochemical (Ti/Al and quartz grain counts) determinations reveal that the transition between monsoonal humid (MIS 6.5) and dry (MIS 6.4) conditions has occurred in less than 1.3 ka. Such rapid changes suggest a nonlinear link between the African monsoonal rainfall system and environmental changes over the continent. This study provides new insights about the influence of vegetation and oceanic temperature feedbacks on the onset of African summer monsoon and demonstrates that, during the penultimate glacial period, changes in tropical dynamics had regional and global impacts.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thick, late Quaternary sediment sections were recovered at several sites on the leeward slope of Great Bahama Bank during Leg 166 of the Ocean Drilling Program. These sections have paleoceanographic records with potentially high temporal resolution. To make an initial assessment of the records corresponding to the Holocene highstand of sea level, we have identified and dated the sediments from the four upper slope sites (1004, 1005, 1008, and 1009) that were deposited during the period of time which spans the last glaciation through the Holocene. Age identifications are based upon the abundances of the Globorotalia menardii complex of planktonic foraminifera, the stable oxygen isotopic ratios of bulk sediment and the planktonic foraminifera Globogerinoides ruber, and AMS C-14 dating of bulk sediment. Comparison of these data with the sediment lithologic and geoacoustic properties shows that consistent stratigraphic relationships exist at each site: The uppermost interval of aragonite-rich sediments corresponds to the Holocene highstand of sea level (i.e. oxygen isotope stage 1) and these sediments are underlain by a relatively thin interval of aragonite-poor, partially lithified sediments which corresponds to the last glaciation when sea level was significantly lower than today (i.e. oxygen isotope stages 2-4). The Leg 166 upper slope sites possess carbonate accumulation and paleoceanographic proxy records with very high temporal resolution, with Sites 1004, 1008, and 1009 appearing to have the greatest stratigraphic integrity. Comparison of core and high-resolution seismic profile data establishes the Holocene nature of the uppermost seismic unit in the stratigraphic package of the western slope of Great Bahama Bank.