458 resultados para 168-1027C
Resumo:
The exchangeable cation compositions of organic-poor terrigenous sediments containing smectite as primary ion exchanger from a series of holes along ODP Leg 168 transect on the eastern flank of the Juan de Fuca Ridge have been examined as a function of distance from the ridge axis and burial depth. The total cation exchange capacity (CEC) values of the sediments ranged from 2 to 59 meq/100 g, increasing with increases in the wt.% smectite. At the seafloor, the exchangeable cation compositions involving Na, K, Mg, and Ca, expressed in terms of equivalent fraction, are nearly constant regardless of the different transect sites: XNa = 0.21 ± 0.04, XK = 0.08 ± 0.01, XMg = 0.33 ± 0.09, and XCa = 0.38 ± 0.09. The calculated selectivity coefficients of the corresponding quaternary exchange reactions, calculated using porewater data, are in log units -5.45 ± 0.39 for Na, 1.97 ± 0.49 for K, 0.42 ± 0.41 for Mg, and 3.06 ± 0.69 for Ca. The exchangeable cation compositions below the seafloor change systematically with distance from the ridge crest and burial depth, conforming to the trends of the same cations in the porewaters. The selectivities for Na and Mg are roughly constant at temperatures from 2 to 66°C, indicating that the equivalent fractions of these two cations are independent of sediment alteration taking place on the ridge flank. Unlike Na and Mg, the temperature influence is significant for K and Ca, with Ca-selectivity decreases being coupled with increases in K-selectivity. Although potentially related to diagenetic and/or hydrothermal mineral precipitation or recrystallization, no evidence of such alteration was detected by XRD and TEM. In sites where upwelling of hydrothermal fluids from basement is occurring, the K-selectivity of the sediment is appreciably higher than at the other sites and corresponds to the formation of (Fe, Mg) rich smectite and zeolites. Our study indicates that local increases in K-selectivity at hydrothermal sites are caused by the formation of these authigenic minerals.
Resumo:
Oceanic sediments deposited at high rate close to continents are dominated by terrigenous material. Aside from dilution by biogenic components, their chemical compositions reflect those of nearby continental masses. This study focuses on oceanic sediments coming from the juvenile Canadian Cordillera and highlights systematic differences between detritus deriving from juvenile crust and detritus from old and mature crust. We report major and trace element concentrations for 68 sediments from the northernmost part of the Cascade forearc, drilled at ODP Sites 888 and 1027. The calculated weighted averages for each site can then be used in the future to quantify the contribution of subducted sediments to Cascades volcanism. The two sites have similar compositions but Site 888, located closer to the continent, has higher sandy turbidite contents and displays higher bulk SiO2/Al2O3 with lower bulk Nb/Zr, attributed to the presence of zircons in the coarse sands. Comparison with published data for other oceanic sedimentary piles demonstrates the existence of systematic differences between modern sediments deriving from juvenile terranes (juvenile sediments) and modern sediments derived from mature continental areas (cratonic sediments). The most striking systematic difference is for Th/Nb, Th/U, Nb/U and Th/Rb ratios: juvenile sediments have much lower ratios than cratonic sediments. The small enrichment of Th over Nb in cratonic sediments may be explained by intracrustal magmatic and metamorphic differentiation processes. In contrast, their elevated Th/U and Nb/U ratios (average values of 6.87 and 7.95, respectively) in comparison to juvenile sediments (Th/U ~ 3.09, Nb/U ~ 5.15) suggest extensive U and Rb losses on old cratons. Uranium and Rb losses are attributed to long-term leaching by rain and river water during exposure of the continental crust at the surface. Over geological times, the weathering effects create a slow but systematic increase of Th/U with exposure time.