482 resultados para 145-884D
Resumo:
Age-progressive, linear seamount chains in the northeast Pacific appear to have formed as the Pacific plate passed over a set of stationary hotspots; however, some anomalously young ages and the lack of an "enriched" isotopic signature in basalts from the seamounts do not fit the standard hotspot model. For example, published ages (28-30 Ma) for basalts dredged from the Patton-Murray seamount platform in the Gulf of Alaska are 2-4 m.y. younger than the time when the platform was above the Cobb hotspot. However, the lowermost basalt recovered by ocean drilling on Patton-Murray yielded a 40Ar-39Ar age of 33 Ma. This age exactly coincides with the time when the seamount platform was above the Cobb hotspot, consistent with a stationary, long-lived mantle plume. A 27 Ma alkalic basalt flow recovered 8 m above the 33 Ma basalt is similar in age and composition to the previously dredged basalts, and may be the alkalic capping phase typical of many hotspot volcanoes. A 17 Ma tholeiitic basalt sill recovered 5 m above the 27 Ma basalt was emplaced long after the seamount platform moved away from the hotspot, and may be associated with a period of intraplate extension. Anomalously young phases of volcanism on this and other hotspot seamounts suggest that they can be volcanically rejuvenated by nonhotspot causes, but this rejuvenation does not rule out the hotspot model as an explanation for the initial creation of the seamount platform. The lack of an "enriched" isotopic signature in any of these basalts shows that enriched compositions are not necessary characteristics of plume-related basalts. The isotopic compositions of the lower basalts are slightly more depleted than the 0-9 Ma products of the Cobb hotspot, despite the fact that the hotspot was closer to a spreading ridge at 0-9 Ma. It appears that this hotspot, like several others, has become more enriched with time.
Resumo:
Increases in the low-field mass-specific magnetic susceptibility (chi), dropstones and the terrigenous sediment component from Ocean Drilling Program (ODP) Site 882 (~45°N) have been interpreted to indicate a major onset of ice-rafting to the sub-Arctic northwest Pacific Ocean during marine isotope stage (MIS) G6 (from ~2.75 Ma). In contrast, studies of the terrigenous content of sediments cored downwind of ODP Site 882 indicate that dust and disseminated volcanic ash deposition in the sub-Arctic Pacific increased markedly during MIS G6. To investigate the relative contribution of dust, volcanic ash and ice rafting to the Pliocene chi increase, we present new high-resolution environmental magnetic and ice-rafted debris records from ODP Sites 882 and 885. Our results demonstrate that the chi increase at both sites across MIS G6 is predominantly controlled by a previously overlooked mixture of aeolian dust and volcanic ash. Our findings call into question the reliability of chi as a proxy for ice-rafting to the North Pacific. They also highlight a previously undocumented link between iron fertilisation and biogeochemical cycling in the North Pacific at a key stage during intensification of late Pliocene northern hemisphere glaciation.