631 resultados para 133-817A


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Marion Plateau is a large carbonate platform off northeastern Queensland. Three sites (815, 816, and 826) were drilled on this platform and form the basis for this study. Larger benthic foraminifers, together with rare planktonic forms from the shallow-water carbonates that form the main part of the platform sequence, were studied to establish a biostratigraphy. The presence of Lepidocyclina (Nephrolepidiná) howchini sensu lato and Ladoronia vermicularis, together with Globorotalia (Globorotalia) praemenardii and Orbulina, indicate an early middle Miocene (N9-N12) age (i.e., lower Tf stage) for these carbonates. Dolomitization has destroyed much of the original fabric of these carbonates, making study of the larger foraminifers difficult. Sites 815 (forereef location) and 826 (backreef, lagoonal setting) provide the best faunas. However, at all sites nodular coralline algae and Halimeda are the major bioclasts; coral fragments form a major component at Sites 816 and 826. The middle Miocene neritic sequence is separated from the overlying hemipelagic sequence by an unconformity that spans much of the middle and late Miocene. At Site 815, which is in a forereef situation, the overlying hemipelagic sequence contains a Zone N17A fauna, but at Site 816, higher on the platform, a similar sequence contains a Zone N19 fauna. The faunas indicate that the platform was built up during the early middle Miocene and remained at fairly constant water depths and temperatures during this period. It was then exposed prior to subsiding rapidly during the late Miocene and Pliocene to depths similar to those of the present day.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At several sites drilled during Ocean Drilling Program (ODP) Leg 133 on the Queensland Plateau, larger shallow-water benthic foraminifers have been recovered from neritic carbonates and from turbidites that consist of shallow-water-derived material. Within neritic sediments, the occurrence of different faunal associations provides a tool for biostratigraphic subdivision. Three main phases of neritic deposition occurred on the Queensland Plateau. An Eocene episode is characterized by subtropical to temperate associations (Operculina-Nummulites Facies). It is unconformably followed by a late Oligocene to middle Miocene episode that contains tropical to subtropical associations (Spiroclypeus Facies, Larger Foraminifer-Coral Facies, Austrotrillina Facies, Flosculinella-Amphistegina Facies, Marginopora Facies, and Miogypsina Facies). After the middle Miocene, most of the Queensland Plateau carbonate platform was drowned. The post-middle Miocene to Holocene reefs, which are characterized by a geographically more restricted distribution, shed neritic material including larger benthic foraminifers into adjacent basinal areas. This process is associated with a partial reworking of middle Miocene deposits containing Lepidocyclina (Nephrolepidina).

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More than 2000 turbidite, debris-flow, and slump deposits recovered at Site 823 record the history of the Queensland Trough since the middle Miocene and provide new insights about turbidites, debris flow, and slump deposits (herein termed gravity deposits). Changes in the composition and nature of gravity deposits through time can be related to tectonic movements, fluctuations in eustatic sea level, and sedimentological factors. The Queensland Trough is a long, relatively narrow, structural depression that formed as a result of Cretaceous to Tertiary rifting of the northeastern Australia continental margin. Thus, tectonics established the geometry of this marginal basin, and its steep slopes set the stage for repeated slope failures. Seismic data indicate that renewed faulting, subsidence, and associated tectonic tilting occurred during the early late Miocene (continuing into the early Pliocene), resulting in unstable slopes that were prone to slope failures and to generation of gravity deposits. Tectonic subsidence, together with a second-order eustatic highstand, resulted in platform drowning during the late Miocene. The composition of turbidites reflects their origin and provides insights about the nature of sedimentation on adjacent shelf areas. During relative highstands and times of platform drowning, planktonic foraminifers were reworked from slopes and/or drowned shelves and were redeposited in turbidites. During relative lowstands, quartz and other terrigenous sediment was shed into the basin. Quartzose turbidites and clay-rich hemipelagic muds also can record increased supply of terrigenous sediment from mainland Australia. Limestone fragments were eroded from carbonate platforms until the drowned platforms were buried under hemipelagic sediments following the late Miocene drowning event. Bioclastic grains and neritic foraminifers were reworked from neritic shelves during relative lowstands. During the late Pliocene (2.6 Ma), the increased abundance of bioclasts and quartz in turbidites signaled the shallowing and rejuvenation of the northeastern Australia continental shelf. However, a one-for-one relationship cannot be recognized between eustatic sea-level fluctuations and any single sedimentologic parameter. Perhaps, tectonism and sedimentological factors along the Queensland Trough played an equally important role in generating gravity deposits. Turbidites and other gravity deposits (such as those at Site 823) do not necessarily represent submarine fan deposits, particularly if they are composed of hemipelagic sediments reworked from drowned platforms and slopes. When shelves are drowned and terrigenous sediment is not directly supplied by nearby rivers/point sources, muddy terrigenous sediments blanket the entire slope and basin, rather than forming localized fans. Slope failures affect the entire slope, rather than localized submarine canyons. Slopes may become destabilized as a result of tectonic activity, inherent sediment weaknesses, and/or during relative sea-level lowstands. For this reason, sediment deposits in this setting reflect tectonic and eustatic events that caused slope instabilities, rather than migration of different submarine fan facies.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: