493 resultados para 130-806B
Resumo:
A sea surface temperature (SST) record based on planktonic foraminiferal magnesium/calcium ratios from a site in the western equatorial Pacific warm pool reveals that glacial-interglacial oscillations in SST shifted from a period of 41,000 to 100,000 years at the mid-Pleistocene transition, 950,000 years before the present. SST changes at both periodicities were synchronous with eastern Pacific cold-tongue SSTs but preceded changes in continental ice volume. The timing and nature of tropical Pacific SST changes over the mid-Pleistocene transition implicate a shift in the periodicity of radiative forcing by atmospheric carbon dioxide as the cause of the switch in climate periodicities at this time.
Resumo:
A detailed Pliocene oxygen isotope record from the Ontong Java Plateau, based on measurements of the surface-dwelling planktonic foraminifer Globigerinoides sacculifer, was produced for the period from 5 to 2 Ma. The record documents major long- and short-term climate changes. The results show periods of enhanced ice volume at 4.6 to 4.3 Ma and after 2.85 Ma, a long-term warming trend from 4.1 to 3.7 Ma, and a distinct cooling trend that was initiated at 3.5 Ma and progressed through the initiation of large-scale Northern Hemisphere glaciation after 2.85 Ma (according to the time scale of Shackleton and others proposed in 1990). Periods of high average ice volumes also show the highest d18O amplitudes. The pattern of climate cyclicity changed markedly at about 2.85 Ma. Earlier times were marked by high-frequency variability at the precessional frequencies or even higher frequencies, pointing to low-latitude processes as a main controlling factor driving planktonic d18O variability in this period. The high-frequency variability is not coherent with insolation and points to strong nonlinearity in the way the climate system responded to orbital forcing before the onset of large scale Northern Hemisphere glaciation. After 3 Ma, stronger 41-k.y. cyclicity appears in the record. The shift in pattern is clearest around 2.85 Ma (according to the time scale proposed by Shackleton and others in 1990), 100-200 k.y. before the most dramatic spread of Northern Hemisphere ice sheets. This indicates that high-latitude processes from this point on began to take over and influence most strongly the d18O record, which now reflects ice-volume fluctuations related to the climatic effects of obliquity forcing on the seasonality of high-latitude areas, most probably in the Northern Hemisphere. The general Pliocene trend is that high-latitude climate sensitivity and instability was increasing, and the causal factors producing the intensified glacial cyclicity during the Pliocene must be factors that enhance cooling and climate sensitivity in the subarctic areas.
Resumo:
We report on diatom abundance and preservation stratigraphy in the uppermost four cores of Ocean Drilling Program Hole 806B, which span the Quaternary period. Changes in diatom abundance and preservation show a rather complicated pattern, with much noise at high frequencies. However, in the cycles corresponding to eccentricity and obliquity variations, the picture is quite clear. Abundance and preservation follow glacial-interglacial cycles, with lowest abundances and poorest preservation observed in sediments that correspond to glacial stages. Seventy taxa compose the diatom assemblage of Hole 806B (from Samples 130-806B-1H-1, 8-9 cm, to -4H-7, 73-74 cm) with Azpeitia nodulifera as the dominant member. This species exhibits significant size variations related to glacial and interglacial stages during the Pleistocene. The distribution of power in the Fourier spectrum of the diatom signal (in the time domain) displays the expected Milankovitch frequencies (at 100,41, and 24-18 k.y.). It also shows concentration at various "odd" frequencies, especially at 62 k.y., suggesting a complicated response of productivity (and silicate chemistry) to climatic forcing.
Resumo:
We have assessed the reliability of several foraminifer-hosted proxies of the ocean carbonate system (d11B, B/Ca, and U/Ca) using Holocene samples from the Atlantic and Pacific oceans. We examined chemical variability over a range of test sizes for two surface-dwelling foraminifers (Globigerinoides sacculifer and Globigerinoides ruber). Measurements of d11B in G. ruber show no significant relationship with test size in either Atlantic or Pacific sites and appear to provide a robust proxy of surface seawater pH. Likewise there is no significant variability in the d11B of our Atlantic core top G. sacculifer, but we find that d11B increases with increasing test size for G. sacculifer in the Pacific. These systematic differences in d11B are inferred to be a consequence of isotopically light gametogenic calcite in G. sacculifer and its preferential preservation during postdepositional dissolution. The trace element ratio proxies of ocean carbonate equilibria, U/Ca and B/Ca, show systematic increases in both G. ruber and G. sacculifer with increasing test size, possibly as a result of changing growth rates. This behavior complicates their use in paleoceanographic reconstructions. In keeping with several previous studies we find that Mg/Ca ratios increase with increasing size fraction in our well-preserved Atlantic G. sacculifer but not in G. ruber. In contrast to previous interpretations we suggest that these observations reflect a proportionally larger influence of compositionally distinct gametogenic calcite in small individuals compared to larger ones. As with d11B this influences G. sacculifer but not G. ruber, which has negligible gametogenic calcite.