116 resultados para 1042
Resumo:
Cores from Sites 1129, 1131, and 1132 (Ocean Drilling Program (ODP) Leg 182) on the uppermost slope at the edge of the continental shelf in the Great Australian Bight reveal the existence of upper Pleistocene bryozoan reef mounds, previously only detected on seismic lines. Benthic foraminiferal oxygen isotope data for the last 450,000 years indicate that bryozoan reef mounds predominantly accumulated during periods of lower sea level and colder climate since stage 8 at Sites 1129 and 1132 and since stage 4 at the deeper Site 1131. During glacials and interstadials (stages 2-8) the combination of lowered sea level, increased upwelling, and absence of the Leeuwin Current probably led to an enhanced carbon flux at the seafloor that favored prolific bryozoan growth and mound formation at Site 1132. At Site 1129, higher temperatures and downwelling appear to have inhibited the full development of bryozoan mounds during stages 2-4. During that time, favorable hydrographic conditions for the growth of bryozoan mounds shifted downslope from Site 1129 to Site 1131. Superimposed on these glacial-interglacial fluctuations is a distinct long-term paleoceanographic change. Prior to stage 8, benthic foraminiferal assemblages indicate low carbon flux to the seafloor, and bryozoan mounds, although present closer inshore, did not accumulate significantly at Sites 1129 and 1132, even during glacials. Our results show that the interplay of sea level change (eustatic and local, linked to platform progradation), glacial-interglacial carbon flux fluctuations (linked to local hydrographic variations), and possibly long-term climatic change strongly influenced the evolution of the Great Australian Bight carbonate margin during the late Pleistocene.