487 resultados para 104-644
Resumo:
Benthic foraminifers have been studied in about 900 samples from Sites 642, 643, and 644 (ODP Leg 104, Voring Plateau), ranging in age from Eocene to Holocene. This sequence has been subdivided into seven assemblage zones. The Eocene to middle Miocene deposits are characterized by an agglutinated fauna. This reflects an environment causing dissolution of calcareous tests rather than the original living fauna. The upper Miocene to middle Pliocene deposits contain a diverse benthic foraminiferal fauna dominated by calcareous forms. The uppermost part of the sediment record, deposited during late Pliocene to Holocene, is characterized by many barren intervals and samples containing shallow-water species as well as ice-rafted material indicating glacial periods. Interglacials are reflected in samples containing a true oceanic foraminifer assemblage and no coarse clastic material.
Resumo:
The Cenozoic sediments sampled in ODP Leg 104 on the Vøring Plateau show a distinct variability of the total organic carbon content (TOC) and the accumulation rates of TOC. Based on the geochemical and organic-petrographic characterization of the sedimentary organic matter (OM), the allochthonous and autochthonous proportion of the OM could be quantified. The results clearly demonstrate that high TOC percentages and TOC accumulation rates in Cenozoic sediment sections display a generally high input of allochthonous organic matter. Oxidized and partly well-rounded organic particles built up the main portion of OM within the Miocene, TOC-rich sediments. The most probable source of this oxidized OM are reworked sediments from the Scandinavian shelf. Changes in the input of these organic particles are to some degree correlative with sea-level changes. The Cenozoic accumulation of autochthonous OM is low and does not reveal a clear variation during the Miocene and early Pliocene. In spite of a high accumulation rate of biogenic opal during the Early Miocene, the accumulation rate of autochthonous TOC is low. The autochthonous particle assemblage is dominated by relatively inert OM, like dinoflagellate cysts. This points to an intensive biological and/or early diagenetic degradation of the marine OM under well oxidized bottom water conditions during the last 23 Myr. Nevertheless, a continuation of marine OM degradation during later stages of diagenesis cannot be excluded. A prominent dominance of allochthonous OM over autochthonous is documented with the beginning of the Pliocene. At 2.45 Ma the episodic occurrence of ice-rafted, thermally mature OM reflects the onset of the glacial erosion of Mesozoic, coal and black shale bearing sediments on the Scandinavian and Barents Sea shelves. The first occurrence of these, in view of the actual burial depth, thermally overmature OM particles is, therefore, a marker for the beginning of the strong Scandinavian glaciation and the advance of the glacial front toward the shelves.