460 resultados para ± opal-CT


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over a broad region of the eastern Japan Sea, Neogene opaline diatomaceous sediments alter with depth to hard porcellanites and cherts composed of opal-CT and quartz. We examined the oxygen isotopic compositions of these diagenetic silica minerals at four widely spaced sites occupied during ODP Leg 127 in order to investigate the thermal history of the region. Formation temperatures computed from these isotopic data range from 22° to 68°C for opal-CT and from 44° to 92°C for diagenetic quartz, quite similar to temperature ranges estimated from the extrapolated modern gradients, 36°-43°C and 49°-64°C, respectively. At each site the isotopic temperature values cluster near the extrapolated ambient sediment temperatures. As a first approximation, the similarities suggest that the positions of the silica transformations in the basin are controlled by the present thermal regime. In detail, isotopic and ambient temperatures differ. If these differences are real, then they reflect variations in the thermal histories at these sites. At Sites 794 and 797 in the Yamato Basin, isotopic temperatures and gradients computed from these data are lower than or comparable to ambient temperatures and gradients. We suggest that the silica zones have roughly equilibrated with the modern gradients at these localities. At Site 795 in the Japan Basin, isotopic temperatures are also lower than ambient sediment temperatures at comparable depths, but the gradient computed from the isotopic temperatures is higher than the present measured gradient. For both scenarios to hold, the silica zones must have formed under initially high gradients during the early post-rift period at this locality. These zones were then rapidly buried and have yet to equilibrate with the modern lower gradient. At Site 796 on Okushiri Ridge, isotopic temperatures exceed present temperatures as expected for an area of recent uplift. The gradient computed from our isotopic data and the thickness of the opal-CT zone indicate a higher gradient than at present at this site, apparently reflecting higher heat fluxes during the early post-rift period or recent frictional heating from nearby reverse fault activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During Ocean Drilling Program Leg 185, we studied progressive changes of microfabrics of unconsolidated pelagic and hemipelagic sediments in Holes 1149A and 1149B in the northwest Pacific at 5818 m water depth. We paid particular attention to the early consolidation and diagenetic processes without tectonic deformation before the Pacific plate subduction at the Izu-Bonin Trench. Shape, size, and arrangement of pores were analyzed by scanning electron microscope (SEM) and were compared to anisotropy of magnetic susceptibility (AMS) data. The microfabric in Unit I is nondirectional fabric and is characterized by large peds of ~10-100 µm diameter, which are made up of clay platelets (mainly illite) and siliceous biogenic fragments. They are ovoid in shape and are mechanically packed by benthic animals. Porosity decreases from 0 to 60 meters below seafloor (mbsf) in Unit I (from 60% to 50%) in association with macropore size decreases. The microfabric of coarser grain particles other than clay in Unit II is characterized by horizontal preferred orientation because of depositional processes in Subunit IIA and burial compaction in Subunit IIB. On the other hand, small peds, which are probably made of fragments of fecal pellets and are composed of smectite and illite (3-30 µm diameter), are characterized by random orientation of clay platelets. The clay platelets in the small peds in Subunit IIA are in low-angle edge-to-face (EF) or face-to-face (FF) contact. These peds are electrostatically connected by long-chained clay platelets, which are interconnected by high-angle EF contact. Breaking of these long chains by overburden pressure diminishes the macropores, and the clay platelets in the peds become FF in contact, resulting in decreases in the volume of the micropores between clay platelets. Thus, porosity in Subunits IIA and IIB decreases remarkably downward. The AMS indicates random fabric and horizontal preferred orientation fabric in Units I and II, respectively. This result corresponds to that of SEM microfabric observations.In Subunit IIB, pressure solutions around radiolarian tests and clinoptilolite veins with normal displacement sense are seen distinctively below ~170 mbsf, probably in correspondence to the transition zone from opal-A to opal-CT.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

At Site 585 of Deep Sea Drilling Project Leg 89 more than 500 m of volcaniclastic to argillaceous middle-Late Cretaceous sediments were recovered. Analyses by X-ray diffraction (bulk sediment and clay fraction), transmission electron microscopy, molecular and atomic absorption, and electron microprobe were done on Site 585 samples. We identify four successive stages and interpret them as the expression of environments evolving under successive influences: Stage 1, late Aptian to early Albian - subaerial and proximal volcanism, chiefly expressed by the presence of augite, analcite, olivine, celadonite, small and well-shaped transparent trioctahedral saponite, Al hydroxides, Na, Fe, Mg, and various trace elements (Mn, Ni, Cr, Co, Pb, V, Zn, Ti). Stage 2, early to middle Albian - submarine and less proximal volcanic influence, characterized by dioctahedral and hairy Mg-beidellites, a paucity of analcite and pyroxenes, the presence of Mg and K, and local alteration of Mg-smectites to Mg-chlorites. Stage 3, middle Albian to middle Campanian - early marine diagenesis, marked by the development of recrystallization from fleecy smectites to lathed ones (all of alkaline Si-rich Fe-beidellite types), by the development of opal CT and clinoptilolite, and by proximal to distal volcanic influences (Na parallel to Ti, K). Local events consist of the supply of reworked palygorskite during the Albian-Cenomanian, and the recurrence of proximal volcanic activity during the early Campanian. Stage 4, late Campanian to Maestrichtian - development of terrigenous supply resulting from the submersion of topographic barriers; this terrigenous supply is associated with minor diagenetic effects and is marked by a clay diversification (beidellite, illite, kaolinite, palygorskite), the rareness of clay recrystallizations, and the disappearance of volcanic markers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This petrological study of the lower Aptian Oceanic Anoxic Event (OAE1a) focused on the nature of the organic-rich interval as well as the tuffaceous units above and below it. The volcaniclastic debris deposited just prior to the OAE1a is consistent with reactivation of volcanic centers across the Shatsky Rise, concurrent with volcanism on the Ontong Java Plateau. This reactivation may have been responsible for the sub-OAE1a unconformity. Soon after this volcanic pulse, anomalous amounts of organic matter accumulated on the rise, forming a black shale horizon. The complex textures in the organic-rich intervals suggest a history of periodic anoxia, overprinted by bioturbation. Components include pellets, radiolarians, and fish debris. The presence of carbonate-cemented radiolarite under the OAE1a intervals suggests that there has been large-scale remobilization of carbonate in the system, which in turn may explain the absence of calcareous microfossils in the section. The volcanic debris in the overlying tuffaceous interval differs in that it is significantly epiclastic and glauconitic. It was likely derived from an emergent volcanic edifice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We discuss the provenance of minerals detected by X-ray-diffraction analyses of sediments of Sites 504 and 505 of Deep Sea Drilling Project Leg 69. These are X-ray-amorphous material, opal-CT, calcite, quartz, feldspar, apatite, smectite, illite, kaolinite, magnetite, maghemite, pyrite, marcasite, barite, sepiolite, and clinoptilolite. Authigenic marcasite and clinoptilolite together with opal-CT are restricted to Site 504, indicating the special diagenetic conditions related to relatively high sediment temperatures at this site. Marcasite formation is likely dependent on the relatively low pH values of <7.1 found in interstitial waters of Site 504 sediments below 50 meters sub-bottom. Clinoptilolite evidently was formed by diagenetic alteration of rhyolitic volcanic glass or smectite plus biogenic silica within the chalk-limestone-chert sequence of Site 504, where opal-CT also reflects a high degree of silica dissolution and reprecipitation. This was a consequence of high temperatures (50-55 °C) at the base of the sediment column.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mineralogy of both bulk- and clay-sized (<2 µm) fractions of sediments from Holes 842A and 842B of Ocean Drilling Program Leg 136 was determined by X-ray diffraction. The sediments consist of a combination of terrigenous (quartz, plagioclase, smectite, illite, kaolinite, and chlorite), volcaniclastic (augite, plagioclase, and volcanic glass), and diagenetic minerals (smectite, phillipsite, clinoptilolite, and opal-CT). Although biogenic silica (radiolarians and diatoms) is common in near-seafloor (<10 mbsf) sediments, biogenic calcite is rare. Variations with depth in abundances of the terrigenous minerals reflect temporal changes in the flux of eolian material to the site. Volcanogenic material derived from the Hawaiian Islands is present in lithologic Unit 1 (0-19.9 meters below seafloor) both as discrete layers and as finely disseminated silt- and clay-sized material. Volcanic glass is present only in the upper 10 m of the sediment column. In Unit 2 (19.9-35.7 mbsf), increased smectite and zeolite abundances with depth as well as indurated, zeolite-rich layers are thought to be the alteration products of volcanogenic material. The source of this older (late Oligocene to middle Miocene) volcanogenic detritus may be continental volcanism. Microfabrics imaged using back-scattered electron imaging reflect the effects of compaction and diagenesis on sediment porosity and matrix structure. As porosity decreases during burial, the matrix changes from an open, floc-like fabric, to an interlocking network of clay mineral domains, and finally to a dense intergrowth of clay minerals and zeolites. Despite the substantial changes in sediment microfabric and mineralogy, correlations between physical and acoustic properties and mineralogy are weak or absent. The sediment has maintained high porosity (>70%), and water content appears to dominate the sediment's physical character and acoustic response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Geochemical analyses of the middle Eocene through lower Oligocene lithologic Unit IIIC (260-518 meters below seafloor [mbsf]) indicate a relatively constant geochemical composition of the detrital fraction throughout this depositional interval at Ocean Drilling Program (ODP) Site 647 in the southern Labrador Sea. The main variability occurs in redox-sensitive elements (e.g., iron, manganese, and phosphorus), which may be related to early diagenetic mobility in anaerobic pore waters during bacterial decomposition of organic matter. Initial preservation of organic matter was mediated by high sedimentation rates (36 m/m.y.). High iron (Fe) and manganese (Mn) contents are associated with carbonate concretions of siderite, manganosiderite, and rhodochrosite. These concretions probably formed in response to elevated pore-water alkalinity and total dissolved carbon dioxide (CO2) concentrations resulting from bacterial sulfate reduction, as indicated by nodule stable-isotope compositions and pore-water geochemistry. These nodules differ from those found in upper Cenozoic hemipelagic sequences in that they are not associated with methanogenesis. Phosphate minerals (carbonate-fluorapatite) precipitated in some intervals, probably as the result of desorption of phosphorus from iron and manganese during reduction. The bulk chemical composition of the sediments differs little from that of North Atlantic Quaternary abyssal red clays, but may contain a minor hydrothermal component. The silicon/ aluminum (Si/Al) ratio, however, is high and variable and probably reflects original variations in biogenic opal, much of which is now altered to smectite and/or opal CT. An increase in the sodium/potassium (Na/K) ratio in the upper Eocene corresponds to the beginning of coarsergrained feldspar flux to the site, possibly marking the onset of more vigorous deep currents. Although the Site 647 cores provide a nearly complete high-resolution, high-latitude Eocene-Oligocene record, the high sedimentation rate and somewhat unusual diagenetic conditions have led to variable alteration of benthic foraminifers and fine-fraction carbonate and have overprinted the original stable-isotope records. Planktonic foraminifers are less altered, but on the whole, there is little chance of sorting out the nature and timing of environmental change on the basis of our stable-isotope analyses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mineralogical and oxygen isotopic analyses of samples from Deep Sea Drilling Project Sites 477, 481, and 477 in the Guaymas Basin indicate the existence of two distinct hydrothermal systems. In the first, at Sites 481 and 478, hot dolerite sills intruded into highly porous hemipelagic siliceous mudstones that were moderately rich in organic matter, thermally altered the adjacent sediments, and expelled hydrothermal pore fluids. The second, at Site 477 and active at present, is most probably caused by a recent igneous intrusion forming a magma chamber at shallow depth. In the first hydrothermal system, the main thermal reactions above and below the sills are dissolution of opal-A and formation of quartz, either directly or through opal-CT; formation of smectite; formation of analcime only above the sills; dissolution and recrystallization of calcite and occasional formation of dolomite or protodolomite. The d18O values of the hydrothermally altered sediments range from 9.9 to 12.2 per mil (SMOW). The d18O values of recrystallized calcites above the first sill complex, Site 481, indicate temperatures of 140° to 170°C. No fluid recharge is required in this system. The thickness of the sill complexes and the sequence and depth of intrusion into the sediment column determine the thickness of the alteration zones, which ranges from 2 or 3 to approximately 50 meters. Generally, the hydrothermally altered zone is thicker above than below the sill. In the second type, the sediments are extensively recrystallized. The characteristic greenschist-facies mineral assemblage of quartz-albite-chlorite-epidote predominates. Considerable amounts of pyrite, pyrrhotite, and sphene are also present. The lowest d18O value of the greenschist facies rocks is 6.6 per mil, and the highest d18O value of the associated pore fluids is +1.38 per mil (SMOW). The paragenesis and the oxygen isotopes of individual phases indicate alteration temperatures of 300 ± 50°C. On the basis of the oxygen isotopes of the solids and associated fluids, it is concluded that recharge of fluids is required. The water/rock ratio in wt.% is moderate, approximately 2/1 to 3/1 - higher than the calculated water/rock ratio of the hydrothermal system at the East Pacific Rise, 21 °N.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Altogether 513 samples from sediments of Cretaceous to Pleistocene age from DSDP Legs 56 and 57 were examined by x-ray methods. The main constituents are clay minerals, quartz, feldspar, opaline silica, and volcanic glass. The sediment composition reflects the position of the sites in relation to the main source area, the Japanese Island Arc. For example, relatively coarse-grained material rich in quartz and feldspar was deposited closest to the islands, whereas finer-grained material rich in clay minerals (mainly smectite and illite, with lesser amounts of kaolinite and chlorite) was deposited farther seaward. Vertical fluctuations in the composition of the sediments show the same trend in all sites and are caused mainly by a fluctuating contribution of biogenic silica with time. A trend reversal in the chlorite/kaolinite ratio at Site 438 supports the conclusion that the subsidence of the Oyashio ancient landmass took place during the middle Miocene. That ratio also indicates a northwest drift in the position of Site 436 by sea floor spreading. Oscillations of the illite/smectite ratio during the Pleistocene at Site 436 show the variations of climate during this period. During early diagenesis potassium is fixed in smectite. With increasing depth of burial a smectite-illite mixed layer is formed, with increasing illite layering. At Sites 434, 440, and 441, stepwise changes confirm intensive tectonic process at the midslope terrace and the lower inner slope of the Japan Trench.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

At the request of the Leg 80 scientific party, selected samples of Cretaceous age were processed by X-ray diffraction at the mineralogy laboratories at the Ecole des Mines (Albian to Late Cretaceous samples) and at the Institut de Géologie at Dijon (Barremian samples). The results were used in developing the lithostratigraphy and sedimentology discussed in this volume by Rat et al. 1985 (doi:10.2973/dsdp.proc.80.140.1985) in their study of Barremian-Albian paleoenvironment, by Graciansky and Gillot in their study of Albian and Cenomanian limestones, and by Graciansky and Bourbon in their paleoenvironmental reconstructions for the Late Cretaceous chalks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mineral and chemical compositions, as well as conditions of formation of clay sediments in major structural elements of the Pacific Ocean floor with different ages are under consideration in the monograph. Depending on evolution of the region two ways of clay sediment formation are identified: terrigenous and authigenic. It is shown that terrigenous clay sediments predominate in marginal parts of the Pacific Ocean. Authigenic mineral formation occurring in the basal part of the sedimentary cover primarily results from removal of material from underlying basalts. This material is released during secondary alteration of the basalts due to their interaction with sea water, as well as with deep solutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ocean Drilling Program Leg 129 recovered chert, porcellanite, and radiolarite from Middle Jurassic to lower Miocene strata from the western Pacific that formed by different processes and within distinct host rocks. These cherts and porcellanites formed by (1) replacement of chalk or limestone, (2) silicification and in-situ silica phase-transformation of bedded clay-bearing biosiliceous deposits, (3) high-temperature silicification adjacent to volcanic flows or sills, and (4) silica phase-transformation of mixed biosiliceous-volcaniclastic sediments. Petrologic and O-isotopic studies highlight the key importance of permeability and time in controlling the formation of dense cherts and porcellanites. The formation of dense, vitreous cherts apparently requires the local addition and concentration of silica. The influence of permeability is shown by two examples, in which: (1) fragments of originally identical radiolarite that were differentially isolated from pore-water circulation by cement-filled fractures were silicified to different degrees, and (2) by the development of secondary porosity during the opal-CT to quartz inversion within conditions of negligible permeability. The importance of time is shown by the presence of quartz chert below, but not above, a Paleogene hiatus at Site 802, indicating that between 30 and 52 m.y. was required for the formation of quartz chert within calcareous-siliceous sediments. The oxygen-isotopic composition for all Leg 129 carbonate- and Fe/Mn-oxide-free whole-rock samples of chert and porcellanite range widely from d18O = 27.8 per mil to 39.8 per mil vs. V-SMOW. Opal-CT samples are consistently richer in 18O (34.1 per mil to 39.3 per mil) than quartz subsamples (27.8 per mil to 35.7 per mil). Using the O-isotopic fractionation expression for quartz-water of Knauth and Epstein (1976) and assuming d18Opore water = -1.0 per mil, model temperatures of formation are 7°-26°C for carbonate-replacement quartz cherts, 22°-25°C for bedded quartz cherts, and 32°-34°C for thermal quartz cherts. Large variations in O-isotopic composition exist at the same burial depth between co-existing silica phases in the same sample and within the same phase in adjacent lithologies. For example, quartz has a wide range of isotopic compositions within a single breccia sample; d18O = 33.4 per mil and 28.0 per mil for early and late stages of fracture-filling cementation, and 31.6 per mil and 30.2 per mil for microcrystalline quartz precipitation within enclosed chert and radiolarite fragments. Similarly, opal-CT d101 spacing varies across lithologic or diagenetic boundaries within single samples. Co-occurring opal-CT and chalcedonic quartz in shallowly buried chert and porcellanite from Sites 800 and 801 have an 8.7 per mil difference in d18O, suggesting that pore waters in the Pigafetta Basin underwent a Tertiary shift to strongly 18O-depleted values due to alteration of underlying Aptian to Albian-Cenomanian volcaniclastic deposits after opal-CT precipitation, but prior to precipitation of microfossil-filling chalcedony.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We measured oxygen-isotope compositions of 16 siliceous rocks from Deep Sea Drilling Project Sites 463, 464, 465, and 466 (Leg 62). Samples are from deposits that range in age from about 40 to 103 m.y. and that occur at sub-bottom depths of 9 to 461 meters. Mean d18O values range from 28.4 to 36.8 per mil and 36.0 ± 0.3 per mil for quartz-rich and opal-CTrich rocks, respectively. d18O values in chert decrease with increasing sub-bottom depth; the slope of the d18O/depth curve is less steep for Site 464 than for the other sites which indicates that chert at Site 464 formed at higher temperatures than chert at Sites 463, 465, and 466. Temperatures of formation of cherts were 7 to 42°C, using the silica-water fractionation factor of Knauth and Epstein (1976), or 19 to 56°C, using the equation of Clayton et al. (1972). Temperatures in the sediment where the cherts now occur are lower than their isotopically determined temperatures of formation, which means that the cherts record an earlier history when temperatures in the sediment section were greater. Estimated sediment temperatures when the cherts formed are comparable to, but generally slightly lower than, those calculated from Knauth and Epstein's equation. The isotopic composition of cherts is more closely related to environment of formation (diagenetic environment) or paleogeothermal gradients, than to paleoclimates (bottom-water temperatures). Opal-CT-rich rocks may better record paleo-bottom-water temperature. In Leg 62 cherts, better crystallinity of quartz corresponds to lower d18O values; this implies progressively higher temperatures of equilibration between quartz and water during maturation of quartz. The interrelationship of d18O and crystallinity is noted also in continental-margin deposits such as the Monterey Formation - but for higher temperatures. The apparent temperature difference between open-ocean and continental-margin deposits can be explained by the dominant control of temperature on silica transformation in the rapidly deposited continental-margin deposits, whereas time, as well as temperature, has a strong influence on the transformations in open-ocean deposits. Comparisons between the chemistry and d18O values of cherts reveal two apparent trends: both boron and SiO2 increase as d18O increases. However, the correspondence between SiO2 and d18O is only apparent, because the two cherts lowest in SiO2 are also the most deeply buried, so the trend actually reflects depth of burial. The correspondence between boron and d18O supports the conclusion that boron is incorporated in the quartz crystal structure during precipitation