733 resultados para ± 1 sigma
Resumo:
A marine sediment core from the leeward margin of Great Bahama Bank (GBB) was subjected to a multiproxy study. The aragonite dominated core MD992201 comprises the past 7230 years in a decadal time resolution and shows sedimentation rates of up to 13.8 m/kyr. Aragonite mass accumulation rates, age differences between planktonic foraminifera and aragonite sediments, and temperature distribution are used to deduce changes in aragonite production rates and paleocurrent strengths. Aragonite precipitation rates on GBB are controlled by exchange of carbonate ions and CO2 loss due to temperature-salinity conditions and biological activity, and these are dependent on the current strength. Paleocurrent strengths on GBB show high current velocities during the periods 6000-5100 years BP, 3500-2700 years BP, and 1600-700 years BP; lower current speeds existed during the time intervals 5100-3500 years BP, 2700-1600 years BP, and 700-100 years BP. Bahamian surface currents are directly linked to the North Atlantic atmospheric circulation, and thus periods with high (low) current speeds are proposed to be phases of strong (weak) atmospheric circulation.
Resumo:
The origin of two acoustic sediment units has been studied based on lithological facies, chronology and benthic stable isotope values as well as on foraminifera and clay mineral assemblages in six marine sediment cores from Kveithola, a small trough west of Spitsbergenbanken on the western Barents Sea margin. We have identified four time slices with characteristic sedimentary environments. Before c. 14.2 cal. ka, rhythmically laminated muds indicate extensive sea ice cover in the area. From c. 13.9 to 14.2 cal. ka, muds rich in ice-rafted debris were deposited during the disintegration of grounded ice on Spitsbergenbanken. From c. 10.3 to 13.1 cal. ka, sediments with heterogeneous lithologies suggest a shifting influence of suspension settling and iceberg rafting, probably derived from a decaying Barents Sea Ice Sheet in the inner-fjord and land areas to the north of Kveithola. Holocene deposition was episodic and characterized by the deposition of calcareous sands and shell debris, indicative of strong bottom currents. We speculate that a marked erosional boundary at c. 8.2 cal. ka may have been caused by the Storegga tsunami. Whilst deposition was sparse during the Holocene, Kveithola acted as a sediment trap during the preceding deglaciation. Investigation of the deglacial sediments provides unprecedented details on the dynamics and timing of glacial retreat from Spitsbergenbanken.
Resumo:
The technique of 40Ar-39Ar step-heating dating was applied to three rock samples from core of DSDP Site 443, one sample from Site 445, and four samples at Site 446. All sites were drilled during DSDP Leg 58. At Site 443 (Shikoku Basin), about 116 meters of basalt basement was drilled. Three samples were chosen for dating from different levels in the basalt; two samples are aphyric basalt, and the other is subophitic dolerite. At Site 445 (Daito Ridge), no basement rock was drilled; however, conglomeratic sandstone was cored in the lower part of the hole. 40Ar-39Ar dating was applied to a basalt pebble in the conglomerate. At Site 446 (Daito Basin), the lower cored sequence is clay stone interlayered with 16 basalt sills. Four samples were chosen from sills at different levels.
Resumo:
Carbon isotopically based estimates of CO2 levels have been generated from a record of the photosynthetic fractionation of 13C (epsilon p) in a central equatorial Pacific sediment core that spans the last ~255 ka. Contents of 13C in phytoplanktonic biomass were determined by analysis of C37 alkadienones. These compounds are exclusive products of Prymnesiophyte algae which at present grow most abundantly at depths of 70-90 m in the central equatorial Pacific. A record of the isotopic compostion of dissolved CO2 was constructed from isotopic analyses of the planktonic foraminifera Neogloboquadrina dutertrei, which calcifies at 70-90 m in the same region. Values of epsilon p, derived by comparison of the organic and inorganic delta values, were transformed to yield concentrations of dissolved CO2 (c e) based on a new, site-specific calibration of the relationship between epsilon p and c e. The calibration was based on reassessment of existing epsilon p versus c e data, which support a physiologically based model in which epsilon p is inversely related to c e. Values of PCO2, the partial pressure of CO2 that would be in equilibrium with the estimated concentrations of dissolved CO2, were calculated using Henry's law and the temperature determined from the alkenone-unsaturation index UK 37. Uncertainties in these values arise mainly from uncertainties about the appropriateness (particularly over time) of the site-specific relationship between epsilon p and 1/c e. These are discussed in detail and it is concluded that the observed record of epsilon p most probably reflects significant variations in Delta pCO2, the ocean-atmosphere disequilibrium, which appears to have ranged from ~110 µatm during glacial intervals (ocean > atmosphere) to ~60 µatm during interglacials. Fluxes of CO2 to the atmosphere would thus have been significantly larger during glacial intervals. If this were characteristic of large areas of the equatorial Pacific, then greater glacial sinks for the equatorially evaded CO2 must have existed elsewhere. Statistical analysis of air-sea pCO2 differences and other parameters revealed significant (p < 0.01) inverse correlations of Delta pCO2 with sea surface temperature and with the mass accumulation rate of opal. The former suggests response to the strength of upwelling, the latter may indicate either drawdown of CO2 by siliceous phytoplankton or variation of [CO2]/[Si(OH)4] ratios in upwelling waters.
Resumo:
We construct age models for a suite of cores from the northeast Atlantic Ocean by means of accelerator mass spectrometer dating of a key core, BOFS 5K, and correlation with the rest of the suite. The effects of bioturbation and foraminiferal species abundance gradients upon the age record are modeled using a simple equation. The degree of bioturbation is estimated by comparing modeled profiles with dispersal of the Vedde Ash layer in core 5K, and we find a mixing depth of roughly 8 cm for sand-sized material. Using this value, we estimate that age offsets between unbioturbated sediment and some foraminifera species after mixing may be up to 2500 years, with lesser effect on fine carbonate (< 10 µm) ages. The bioturbation model illustrates problems associated with the dating of 'instantaneous' events such as ash layers and the 'Heinrich' peaks of ice-rafted detritus. Correlations between core 5K and the other cores from the BOFS suite are made on the basis of similarities in the downcore profiles of oxygen and carbon isotopes, magnetic susceptibility, water and carbonate content, and via marker horizons in X radiographs and ash beds.
Resumo:
The continental margin off the La Plata Estuary (SE South America) is characterized by high fluvial sediment supply and strong ocean currents. High-resolution sediment-acoustic data combined with sedimentary facies analysis, AMS-14C ages, and neodymium isotopic data allowed us to reconstruct late Quaternary sedimentary dynamics in relation to the two major sediment sources, the La Plata Estuary and the Argentine margin. Sediments from these two provinces show completely different dispersal patterns. We show that the northward-trending La Plata paleo-valley was the sole transit path for the huge volumes of fluvial material during lower sea levels. In contrast, material from the Argentine margin sector was transported northwards by the strong current system. Despite the large sediment volumes supplied by both sources, wide parts of the shelf were characterized by either persistent non-deposition or local short-term depocenter formation. The location and formation history of these depocenters were primarily controlled by the interplay of sea level with current strength and local morphology. The high sediment supply was of secondary importance to the stratigraphic construction, though locally resulting in high sedimentation rates. Thus, the shelf system off the La Plata Estuary can be considered as a hydrodynamic-controlled end-member.
Resumo:
Paleomagnetic inclination, declination and relative paleointensity were reconstructed from the sediments of Laguna Potrok Aike in the framework of the International Continental scientific Drilling Program (ICDP) Potrok Aike maar lake Sediment Archive Drilling prOject (PASADO). Here we present the u-channel-based full vector paleomagnetic field reconstruction since 51.2 ka cal BP. The relative paleointensity proxy (RPI) was built by normalising the natural remanent magnetisation with the anhysteretic remanent magnetisation using the average ratio at 4 demagnetisation steps part of the ChRM interval (NRM/ARM10e40 mT). A grain size influence on the RPI was removed using a correction based on the linear relationship between the RPI and the median destructive field of the natural remanent magnetisation (MDFNRM). The new record is compared with other lacustrine and marine records and stacks from the mid- to high-latitudes of the Southern Hemisphere, revealing consistent millennial-scale variability, the identification of the Laschamp and possibly the Mono Lake geomagnetic excursions, and a direction swing possibly associated to the Hilina Pali excursion at 20 ka cal BP. Nonetheless, a global-scale comparison with other high-resolution records located on the opposite side of the Earth and with various dipole field references hint at a different behaviour of the geomagnetic field around southern South America at 46 ka cal BP.
Resumo:
The filling up of the lake which existed in the basin of the Trentelmoor (40 km E of Hannover, Germany) - in Preboreal times was finished 2000 years ago. Since then fen vegetation has covered the former lake's surface. The postglacial development of the vegetation follows the pattern which is typical of Central Europe. However, due to the poorness of the soils around the Trentelmoor, the frequencies of some tree species differ. Beech for example never reached - for the benefit of oak - that importance which this tree species usually gains on better soils. Human impact becomes recognisable in the upper Neolithic for the first time. The area has been settled continuously, but with changing intensities, throughout the last 3000 years. When the manuscript of this paper went to press the results of two radiocarbon age determinations only were completed. An additional three determinations were completed somewhat later. See the accompanying table for results.
Resumo:
Apatite fission track (FT) ages and length characteristics of samples obtained from Cambrian to Paleocene-aged sandstones collected along the margin of Nares Strait in Ellesmere Island in the Canadian Arctic Archipelago are dominated by a thermal history related to Paleogene relative plate movements between Greenland and Ellesmere Island. A preliminary inverse FT thermal model for a Cambrian (Archer Fiord Formation) sandstone in the hanging wall of the Rawlings Bay thrust at Cape Lawrence is consistent with Paleocene exhumational cooling, likely as a result of erosion of the thrust. This suggests that thrusting at Cape Lawrence occurred prior to the onset of Eocene compression, likely due to transpression during earlier strikeslip along the strait. Models for samples from volcaniclastic sandstones of the Late Paleocene Pavy Formation (from Cape Back and near Pavy River), and a sandstone from the Late Paleocene Mount Lawson Formation (at Split Lake, near Makinson Inlet) are also consistent with minor burial heating following known periods of basaltic volcanism in Baffin Bay and Davis Strait (c. 61-59 Ma), or related tholeiitic volcanism and intrusive activity (c. 55-54 Ma). Thermal models for samples from sea level dykes from around Smith Sound suggest a period of Late Cretaceous - Paleocene heating prior to final cooling during Paleocene time. These model results imply that Paleocene tectonic movements along Nares Strait were significant, and provide limited support for the former existence of the Wegener Fault. Apatite FT data from central Ellesmere Island suggest however, that cooling there occurred during Early Eocene time (c. 50 Ma), which was likely a result of erosion of thrusts during Eurekan compression. This diachronous cooling suggests that Eurekan deformation was partitioned at discrete intervals across Ellesmere Island, and thus it is likely that displacements along the strait were much less than the 150 km that has been previously suggested for the Wegener Fault.
Resumo:
The Gangdese belt, Tibet, records the opening and closure of the Neo-Tethyan ocean and the resultant collision between the Indian and Eurasian plates. Mesozoic magmatic rocks generated through subduction of the Tethyan oceanic slab constitute the main component of the Gangdese belt, and play a crucial role in understanding the formation and evolution of the Neo-Tethyan tectonic realm. U-Pb and Lu-Hf isotopic data for tonalite and granodiorite from the Xietongmen-Nymo segment of the Gangdese belt indicate a significant pulse of Jurassic magmatism from 184 Ma to 168 Ma. The magmatic rocks belong to metaluminous medium-K calc-alkaline series, characterized by regular variation in major element compositions with SiO2 of 61.35%-73.59 wt%, low to moderate MgO (0.31%-2.59%) with Mg# of 37-45. These magmatic rocks are also characterized by LREE enrichment with concave upward trend in MREE on the chondrite-normalized REE patterns, and also LILE enrichment and depletion in Nb, Ta and Ti in the primitive mantle normalized spidergrams. These rocks have high zircon ?Hf(t) values of + 10.94 to + 15.91 and young two-stage depleted mantle model ages (TDM2) of 192 Ma to 670 Ma. The low MgO contents and relatively depleted Hf isotope compositions, suggest that the granitoid rocks were derived from the partial melting of the juvenile basaltic lower crust with minor mantle materials injected. In combined with the published data, it is suggested that northward subduction of the Neo-Tethyan slab beneath the Lhasa terrane began by the Late-Triassic, which formed a major belt of arc-related magmatism.
Resumo:
Knowledge of past natural flood variability and controlling climate factors is of high value since it can be useful to refine projections of the future flood behavior under climate warming. In this context, we present a seasonally resolved 2000 year long flood frequency and intensity reconstruction from the southern Alpine slope (North Italy) using annually laminated (varved) lake sediments. Floods occurred predominantly during summer and autumn, whereas winter and spring events were rare. The all-season flood frequency and, particularly, the occurrence of summer events increased during solar minima, suggesting solar-induced circulation changes resembling negative conditions of the North Atlantic Oscillation as controlling atmospheric mechanism. Furthermore, the most extreme autumn events occurred during a period of warm Mediterranean sea surface temperature. Interpreting these results in regard to present climate change, our data set proposes for a warming scenario, a decrease in summer floods, but an increase in the intensity of autumn floods at the South-Alpine slope.
Resumo:
The 106 m long composite profile from site 2 of ICDP expedition 5022 (PASADO) at Laguna Potrok Aike documents a distinct change in sedimentation patterns from pelagic sediments at the top to dominating mass movement deposits at its base. The main lithological units correspond to the Holocene, to the Lateglacial and to the last glacial period and can be interpreted as the result of distinct environmental variations. Overflow conditions might have been achieved during the last glacial period, while signs of desiccation are absent in the studied sediment record. Altogether, 58 radiocarbon dates were used to establish a consistent age-depth model by applying the mixed-effect regression procedure which results in a basal age of 51.2 cal. ka BP. Radiocarbon dates show a considerable increase in scatter with depth which is related to the high amount of reworking. Validation of the obtained chronology was achieved with geomagnetic relative paleointensity data and tephra correlation.
Resumo:
The primary Mg/Ca ratio of foraminiferal shells is a potentially valuable paleoproxy for sea surface temperature (SST) reconstructions. However, the reliable extraction of this ratio from sedimentary calcite assumes that we can overcome artifacts related to foraminiferal ecology and partial dissolution, as well as contamination by secondary calcite and clay. The standard batch method for Mg/Ca analysis involves cracking, sonicating, and rinsing the tests to remove clay, followed by chemical cleaning, and finally acid-digestion and single-point measurement. This laborious procedure often results in substantial loss of sample (typically 30-60%). We find that even the earliest steps of this procedure can fractionate Mg from Ca, thus biasing the result toward a more variable and often anomalously low Mg/Ca ratio. Moreover, the more rigorous the cleaning, the more calcite is lost, and the more likely it becomes that any residual clay that has not been removed by physical cleaning will increase the ratio. These potentially significant sources of error can be overcome with a flow-through (FT) sequential leaching method that makes time- and labor-intensive pretreatments unnecessary. When combined with time-resolved analysis (FT-TRA) flow-through, performed with a gradually increasing and highly regulated acid strength, produces continuous records of Mg, Sr, Al, and Ca concentrations in the leachate sorted by dissolution susceptibility of the reacting material. Flow-through separates secondary calcite from less susceptible biogenic calcite and clay, and further resolves the biogenic component into primary and more resistant fractions. FT-TRA reliably separates secondary calcite (which is not representative of original life habitats) from the more resistant biogenic calcite (the desired signal) and clay (a contaminant of high Mg/Ca, which also contains Al), and further resolves the biogenic component into primary and more resistant fractions that may reflect habitat or other changes during ontogeny. We find that the most susceptible fraction of biogenic calcite in surface dwelling foraminifera gives the most accurate value for SST and therefore best represents primary calcite. Sequential dissolution curves can be used to correct the primary Mg/Ca ratio for clay, if necessary. However, the temporal separation of calcite from clay in FT-TRA is so complete that this correction is typically <=2%, even in clay-rich sediments. Unlike hands-on batch methods, that are difficult to reproduce exactly, flow-through lends itself to automation, providing precise replication of treatment for every sample. Our automated flow-through system can process 22 samples, two system blanks, and 48 mixed standards in <12 hours of unattended operation. FT-TRA thus represents a faster, cheaper, and better way to determine Mg/Ca ratios in foraminiferal calcite.
Resumo:
We report the intercalibration of paleomagnetic secular variation (PSV) and radiocarbon dates of two expanded postglacial sediment cores from geographically proximal, but oceanographically and sedimentologically contrasting settings. The objective is to improve relative correlation and chronology over what can be achieved with either method alone. Core MD99-2269 was taken from the Húnaflóaáll Trough on the north Iceland shelf. Core MD99-2322 was collected from the Kangerlussuaq Trough on the east Greenland margin. Both cores are well dated, with 27 and 20 accelerator mass spectrometry 14C dates for cores 2269 and 2322, respectively. Paleomagnetic measurements made on u channel samples document a strong, stable, single-component magnetization. The temporal similarities of paleomagnetic inclination and declination records are shown using each core's independent calibrated radiocarbon age model. Comparison of the PSV records reveals that the relative correlation between the two cores could be further improved. Starting in the depth domain, tie points initially based on calibrated 14C dates are either adjusted or added to maximize PSV correlations. Radiocarbon dates from both cores are then combined on a common depth scale resulting from the PSV correlation. Support for the correlation comes from the consistent interweaving of dates, correct alignment of the Saksunarvatn tephra, and the improved correlation of paleoceanographic proxy data (percent carbonate). These results demonstrate that PSV correlation used in conjunction with 14C dates can improve relative correlation and also regional chronologies by allowing dates from various stratigraphic sequences to be combined into a single, higher dating density, age-to-depth model.
Resumo:
Hypabyssal rocks of the Omgon Range, Western Kamchatka that intrude Upper Albian-Lower Campanian deposits of the Eurasian continental margin belong to three coeval (62.5-63.0 Ma) associations: (1) ilmenite gabbro-dolerites, (2) titanomagnetite gabbro-dolerites and quartz microdiorites, and (3) porphyritic biotite granites and granite-aplites. Early Paleocene age of ilmenite gabbro-dolerites and biotite granites was confirmed by zircon and apatite fission-track dating. Ilmenite and titanomagnetite gabbro-dolerites were produced by multilevel fractional crystallization of basaltic melts with, respectively, moderate and high Fe-Ti contents and contamination of these melts with rhyolitic melts of different compositions. Moderate- and high-Fe-Ti basaltic melts were derived from mantle spinel peridotite variably depleted and metasomatized by slab-derived fluid prior to melting. The melts were generated at variable depths and different degrees of melting. Biotite granites and granite aplites were produced by combined fractional crystallization of a crustal rhyolitic melt and its contamination with terrigenous rocks of the Omgon Group. The rhyolitic melts were likely derived from metabasaltic rocks of suprasubduction nature. Early Paleocene hypabyssal rocks of the Omgon Range were demonstrated to have been formed in an extensional environment, which dominated in the margin of the Eurasian continent from Late Cretaceous throughout Early Paleocene. Extension in the Western Kamchatka segment preceded the origin of the Western Koryakian-Kamchatka (Kinkil') continental-margin volcanic belt in Eocene time. This research was conducted based on original geological, mineralogical, geochemical, and isotopic (Rb-Sr) data obtained by the authors.