616 resultados para eastern Romanche Fracture Zone


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ROV operations had three objectives: (1) to check, whether the "Cherokee" system is suited for advanced benthological work in the high latitude Antarctic shelf areas; (2) to support the disturbance experiment, providing immediate visual Information; (3) to continue ecological work that started in 1989 at the hilltop situated at the northern margin of the Norsel Bank off the 4-Seasons Inlet (Weddell Sea). The "Cherokee" is was equipped with 3 video cameras, 2 of which support the operation. A high resolution Tritech Typhoon camera is used for scientific observations to be recorded. In addition, the ROV has a manipulator, a still camera, lights and strobe, compass, 2 lasers, a Posidonia transponder and an obstacle avoidance Sonar. The size of the vehicle is 160 X 90 X 90cm. In the present configuration without TMS (tether management system) the deployment has to start with paying out the full cable length, lay it in loops on deck and connect the glass fibres at the tether's spool winch. After a final technical check the vehicle is deployed into the water, actively driven perpendicular to the ship's axis and floatings are fixed to the tether. At a cable length of approx. 50 m, the tether is tightened to the depressor by several cable ties and both components are lowered towards the sea floor, the vehicle by the thruster's propulsion and the depressor by the ship's winch. At 5 m intervals the tether has to be tied to the single conductor cable. In good weather conditions the instruments supporting the navigation of the ROV, especially the Posidonia system, allow an operation mode to follow the ship's course if the ship's speed is slow. Together with the lasers which act as a scale in the images they also allow a reproducible scientific analysis since the transect can be plotted in a GIS system. Consequently, the area observed can be easily calculated. An operation as a predominantly drifting system, especially in areas with bottom near currents, is also possible, however, the connection of the tether at the rear of the vehicle is unsuitable for such conditions. The recovery of the system corresponds to that of the deployment. Most important is to reach the surface of the sea at a safe distance perpendicular to the ship's axis in order not to interfere with the ship's propellers. During this phase the Posidonia transponder system is of high relevance although it has to be switched off at a water depth of approx. 40 m. The minimum personal needed is 4 persons to handle the tether on deck, one person to operate the ship's winch, one pilot and one additional technician for the ROV's operation itself, one scientist, and one person on the ship's bridge in addition to one on deck for whale watching when the Posidonia system is in use. The time for the deployment of the ROV until it reaches the sea floor depends on the water depth and consequently on the length of the cable to be paid out beforehand and to be tightened to the single conductor cable. Deployment and recovery at intermediate water depths can last up to 2 hours each. A reasonable time for benthological observations close to the sea floor is 1 to 3 hours but can be extended if scientifically justified. Preliminary results: after a first test station, the ROV was deployed 3 times for observations related to the disturbance experiment. A first attempt to Cross the hilltop at the northern margin of the Norsel Bank close to the 4- Seasons Inlet was successful only for the first hundreds of metres transect length. The benthic community was dominated in biomass by the demosponge Cinachyra barbata. Due to the strong current of approx. 1 nm/h, the design of the system, and an expected more difficult current regime between grounded icebergs and the top of the hilltop the operation was stopped before the hilltop was reached. In a second attempt the hilltop was successfully crossed because the current and wind situation was much more suitable. In contrast to earlier expeditions with the "sprint" ROV it was the first time that both slopes, the smoother in the northeast and the steeper in the southwest were continuously observed during one cast. A coarse classification of the hilltop fauna shows patches dominated by single taxa: cnidarians, hydrozoans, holothurians, sea urchins and stalked sponges. Approximately 20 % of the north-eastern slope was devastated by grounding icebergs. Here the sediments consisted of large boulders, gravel or blocks of finer sediment looking like an irregularly ploughed field. On the Norsel Bank the Cinachyra concentrations were locally associated with high abundances of sea anemones. Total observation time amounted to 11.5 hours corresponding to almost 6-9 km transect length.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distribution of the mean oceanic oxygen concentration results from a balance between ventilation and consumption. In the eastern tropical Pacific and Atlantic, this balance creates extended oxygen minimum zones (OMZ) at intermediate depth. Here, we analyze hydrographic and velocity data from shipboard and moored observations, which were taken along the 23°W meridian cutting through the Tropical North East Atlantic (TNEA) OMZ, to study the distribution and generation of oxygen variability. By applying the extended Osborn-Cox model, the respective role of mesoscale stirring and diapycnal mixing in producing enhanced oxygen variability, found at the southern and upper boundary of the OMZ, is quantified. From the well-ventilated equatorial region toward the OMZ core a northward eddy-driven oxygen flux is observed whose divergence corresponds to an oxygen supply of about 2.4 µmol kg-1 year-1 at the OMZ core depth. Above the OMZ core, mesoscale eddies act to redistribute low- and high-oxygen waters associated with westward and eastward currents, respectively. Here, absolute values of the local oxygen supply >10 mmol kg-1 year-1 are found, likely balanced by mean zonal advection. Combining our results with recent studies, a refined oxygen budget for the TNEA OMZ is derived. Eddy-driven meridional oxygen supply contributes more than 50 % of the supply required to balance the estimated oxygen consumption. The oxygen tendency in the OMZ, as given by the multidecadal oxygen decline, is maximum slightly above the OMZ core and represents a substantial imbalance of the oxygen budget reaching about 20 % of the magnitude of the eddy-driven oxygen supply.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes seagrass species and percentage cover point-based field data sets derived from georeferenced photo transects. Annually or biannually over a ten year period (2004-2015) data sets were collected using 30-50 transects, 500-800 m in length distributed across a 142 km**2 shallow, clear water seagrass habitat, the Eastern Banks, Moreton Bay, Australia. Each of the eight data sets include seagrass property information derived from approximately 3000 georeferenced, downward looking photographs captured at 2-4 m intervals along the transects. Photographs were manually interpreted to estimate seagrass species composition and percentage cover (Coral Point Count excel; CPCe). Understanding seagrass biology, ecology and dynamics for scientific and management purposes requires point-based data on species composition and cover. This data set, and the methods used to derive it are a globally unique example for seagrass ecological applications. It provides the basis for multiple further studies at this site, regional to global comparative studies, and, for the design of similar monitoring programs elsewhere.