630 resultados para Amundsen Sea, upper continental rise (NE of westernmost Getz Trough)
Resumo:
The Labrador Sea is a particularly suitable high-latitude basin for investigating U and Th behavior in deep-sea sediments. During the late Quaternary, the cyclic development and decay of huge ice sheets on adjacent land masses resulted in large-amplitude changes in sedimentation rates and organic paleoproductivities. The resulting magnification of U and Th response is well illustrated by high-resolution studies on piston-cored sediments from the Greenland continental rise at Ocean Drilling Program Leg 105 Site 646 spanning isotopic stages 8 to 1. Our results show a clear positive correlation of 238U/232Th ratios with organic paleoproductivity indicators (e.g., dinocyst) due to U uptake in the water column and/or during the early early diagenesis of organic matter responding to carbon fluxes and to their climate forcing. 230Th excesses over 234U exceed the theoretical value of the 230Th rain from the overlying water column, indicating lateral input possibly from the Greenland slope and shelf. Because these horizontal fluxes of 230Th may be partly controlled by physical parameters, 230Th excesses cannot be unequivocally correlated with sedimentation rates and/or productivity as reported elsewhere. In this subarctic basin characterized by low overall organic carbon burial, the 238U/232Th ratio appears to be a sensible geochemical indicator of organic activity and paleoproductivity.
Resumo:
During the Arctic Coring Expedition (ACEX), a 428-m-thick sequence of Upper Cretaceous to Quaternary sediments was penetrated. The mineralogical composition of the upper 300 m of this sequence is presented here for the first time. Heavy and clay mineral associations indicate a major and consistent shift in provenance, from the Barents-Kara - western Laptev Sea region, characterized by presence of common clinopyroxene, to the eastern Laptev-East Siberian seas in the upper part of the section, characterized by common hornblende (amphibole). Sea ice originating from the latter source region must have survived at least one summer melt cycle in order to reach the ACEX drill site, if considering modern sea ice trajectories and velocities. This shift in mineral assemblages probably represents the onset of a perennial sea ice cover in the Arctic Ocean, which occurred at about 13 Ma, thus suggesting a coeval freeze in the Arctic and Antarctic regions.
Resumo:
Based on models and proxy data it has been proposed that salinity-driven stratification weakened in the subarctic North Pacific during the last deglaciation, which potentially contributed to the deglacial rise in atmospheric carbon dioxide. We present high-resolution subsurface temperature (TMg/Ca) and subsurface salinity-approximating (d18Oivc-sw) records across the last 20,000 years from the subarctic North Pacific and its marginal seas, derived from combined stable oxygen isotopes and Mg/Ca ratios of the planktonic foraminiferal species Neogloboquadrina pachyderma (sin.). Our results indicate regionally differing changes of subsurface conditions. During the Heinrich Stadial 1 and the Younger Dryas cold phases our sites were subject to reduced thermal stratification, brine rejection due to sea-ice formation, and increased advection of low-salinity water from the Alaskan Stream. In contrast, the Bølling-Allerød warm phase was characterized by strengthened thermal stratification, stronger sea-ice melting, and influence of surface waters that were less diluted by the Alaskan Stream. From direct comparison with alkenone-based sea surface temperature estimates (SSTUk'37), we suggest deglacial thermocline changes that were closely related to changes in seasonal contrasts and stratification of the mixed layer. The modern upper-ocean conditions seem to have developed only since the early Holocene.
Resumo:
Comparison of rates of accumulation of organic carbon in surface marine sediments from the central North Pacific, the continental margins off northwest Africa, northwest and southwest America, the Argentine Basin, and the western Baltic Sea with primary production rates suggests that the fraction of primary produced organic carbon preserved in the sediments is universally related to the bulk sedimentation rate. Accordingly, less than 0.01% of the primary production becomes fossilized in slowly accumulating pelagic sediments [(2 to 6 mm (1000 y)**-1] of the Central Pacific, 0.1 to 2% in moderately rapidly accumulating [2 to 13 cm (1000 y)**-1] hemipelagic sediments off northwest Africa, northwest America (Oregon) and southeast America (Argentina), and 11 to 18% in rapidly accumulating [66 to 140 cm (1000 y)**-1] hemipelagic sediments off southwest America (Peru) and in the Baltic Sea. The emiprical expression: %Org-C = (0.0030*R*S**0.30)/(ps(1-Theta)) implies that the sedimentary organic carbon content (% Org-C) doubles with each 10-fold increase in sedimentation rate (S), assuming that other factors remain constant; i.e., primary production (R), porosity and sediment density (ps). This expression also predicts the sedimentary organic carbon content from the primary production rate, sedimentation rate, dry density of solids, and their porosity; it may be used to estimate paleoproductivity as well. Applying this relationship to a sediment core from the continental rise off northwest Africa (Spanish Sahara) suggests that productivity there during interglacial oxygen isotope stages 1 and 5 was about the same as today but was higher by a factor of 2 to 3 during glacial stages 2, 3, and 6.
Resumo:
We determined the sedimentary concentrations of phosphorus (P), barium (Ba), manganese (Mn), titanium (Ti), aluminum (Al), and uranium (U) for sediment samples from the southeast Pacific Nazca Ridge, Ocean Drilling Program Site 1237. This unique record extends to 31 Ma over 360 meters composite depth (mcd), recording depositional history as the site progressed eastward over its paleohistory. We sampled with a temporal resolution of ~0.2 m.y. throughout the sequence, equivalent to an average spacing of 1.63 m/sample. Concentrations of sequentially extracted components of P (oxide-associated, authigenic, organic, and detrital) increase toward the modern. Al/Ti ratios indicate that the background detrital source material is consistent with upper continental crust. U enrichment factors (U EFs) generally exceed crustal values and indicate slightly reducing environments. However, authigenic U precipitation can also be influenced by the organic carbon rain rate and may not be solely an indicator of redox conditions. Dramatic changes in Mn EFs at ~162 mcd, from values between 12 and 93 to values <12 after this depth, and a sharp color contact boundary lead us to believe that a paleoredox boundary from an oxygenated to a more reducing depositional environment occurred near this depth. Estimates of biogenic barite concentrations from a total sediment digestion technique (Ba excess) are greater than those from a barite extraction (Ba barite) for selected samples across the entire depth range. Applying a range of Ba/Ti ratios from different source materials to correct for detrital inputs does not change the lack of agreement with Ba barite concentrations. Reactive P (P reactive) concentrations (the sum of oxide-associated, authigenic, and organic P concentrations) increase toward the modern with values typically <12 µmol P/g from the base of our record through ~100 mcd, with a gradual increase to concentrations >15 µmol P/g. Ba excess follows the same general trends as Preactive, with concentrations <14 µmol Ba/g in the lower portion of the record to values >15 µmol Ba/g. Accumulation rate records of these proxies will be needed to infer paleoproductivity. P reactive/Ba excess ratios, an indicator of the relative burial of the nutrient P to organic carbon export, exhibit higher values, similar to modern, from the base of our record through ~180 mcd. The remainder of the record exhibits values lower than modern, indicating that organic carbon export to the sediments was higher relative to nutrient burial.
Resumo:
Comparison of daily and diel variability of chlorophyll-a concentration at three long-term stations in meso- and eutrophic regions indicates that their values are similar. Daily patterns of deviation in chlorophyll concentration in small and large phytoplankton fraction from average daily values are presented. In conformity with a hypothesis of daily removal rhythms correlated with changes in diel light-dark periods, it was concluded that the mesotrophic region during the dark period is characterized by predominance of grazing on large phytoplankton in the upper layers and accumulation of detritus from cell fragments in the lower layer, while during the light period smaller phytoplankton predominantly grazed. The eutrophic region is characterized by predominance of grazing on small phytoplankton fraction in the upper layers during the dark period and settling out of fecal pellets containing chlorophyll into deeper depths; but during the light period, large phytoplankton predominantly grazed throughout the whole water layer.