584 resultados para 125-782A
Resumo:
The high-pressure, low-temperature metamorphic rocks known as blueschists have long been considered to form in subduction zones, where the descent of a relatively cold slab leads to the occurrence of unusually low temperatures at mantle pressures. Until now, however, the link between blueschist-facies rocks and subduction zones has been indirect, relying on a spatial association of blueschists with old subduction complexes, and estimates of the geothermal gradients likely to exist in subduction zones. Here we strengthen this link, by reporting the discovery of blueschist-facies minerals (lawsonite, aragonite, sodic pyroxene and blue amphibole) in clasts from a serpentinite seamount in the forearc of the active Mariana subduction zone. The metamorphic conditions estimated from the mineral compositions are 150-250 °C and 5-6 kbar (16-20 km depth). The rocks must have been entrained in rising serpentine mud diapirs, and extruded from mud volcanoes onto the sea floor. Further study of these rocks may provide new insight into the tectonics of trench-forearc systems, and in particular, the processes by which blueschist-facies clasts come to be associated with forearc sediments in ancient subduction complexes.
Resumo:
The strontium isotopic data presented here are from interstitial waters squeezed from unconsolidated serpentine, an unusual type of substrate that was recovered from Mariana and Bonin forearc seamounts and has not been previously drilled by the Deep Sea Drilling Project or Ocean Drilling Program. The texture and composition of some of these serpentine deposits from Conical Seamount, located on the Mariana forearc, indicate emplacement as low- or high-viscosity, cold gravitational flows, which are therefore neither sediment nor igneous rock. The strontium isotopic ratios of the interstitial waters from the unconsolidated serpentine range from 0.70912 to 0.70525 and trend toward a relatively less radiogenic composition with increasing sub-bottom depth. These strontium isotopic ratios are derived from at least two strontium sources: seawater and igneous. The strontium isotopic gradients from the interstitial waters from the Leg 125 sites are probably the result of diffusive transport of strontium from an igneous source deep within the lithosphere that may be contaminated with subducted or underplated sediment.