795 resultados para amphibole olivine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A collection of dredge samples from the Hunter Fracture Zone includes holocrystalline massive and cumulose basic and ultrabasic rocks and volcanites of the ophiolite complex: from basalts to rhyolites. The ultrabasic rocks are largely serpentinized harzburgites and lherzolites; their relict mineralogy is typical of peridotite considered to be the refractory residue of partial melting of the mantle. Cumulate textured ultramafic rocks probably are related to the cumulate gabbro and granodiorite rather than to the residual mantle material. The gabbroic rocks are dominantly cumulate textured Pl-Opx-Cpx±Ol gabbronorite and Pl-Cpx±Ol gabbros; the mineral features of these rocks are the result of their crystallization at moderate pressure (in a moderate level magma chamber). The massive Pl-Cpx±Ol gabbros are less common. Green and brown-green Ca-amphibole has partially or totally replaced the clinopyroxene in many samples. There is an overlap in mineral chemistry between the cumulate rocks and the Opx-Cpx-Pl volcanic rocks and boninites. It is interpreted as an indication that the cumulate rocks were co-genetic with Opx-Cpx-Pl volcanic rocks and that they both constitute remnants of an island arc volcanic-plutonic series. The petrologic evidence indicates that ophiolite gabbroic rocks were derived from an island-arc rather than from a mid-ocean ridge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gabbroic rocks and their late differentiates recovered at Site 735 represent 500 m of oceanic layer 3. The original cooling of a mid-ocean ridge magma chamber, its penetration by ductile shear zones and late intrusives, and the subsequent penetration of seawater through a network of cracks and into highly permeable magmatic hydrofracture horizons are recorded in the metamorphic stratigraphy of the core. Ductile shear zones are characterized by extensive dynamic recrystallization of primary phases, beginning in the granulite facies and continuing into the lower amphibolite facies. Increasing availability of seawater during dynamic recrystallization is reflected in depletions in 18O, increasing abundance of amphibole of variable composition and metamorphic plagioclase of intermediate composition, and more complete coronitic or pseudomorphous static replacement of magmatic minerals. Downcore correlation of synkinematic assemblages, bulk-rock oxygen isotopic compositions, and vein abundance suggest that seawater is introduced into the crust by way of small cracks and veins that mark the end of the ductile phase of deformation. This "deformation-enhanced" metamorphism dominates the upper 180 and the lower 100 m of the core. In the lower 300 m of the core, mineral assemblages of greenschist and zeolite facies are abundant within or adjacent to brecciated zones. Leucocratic veins found in these zones and adjacent host rock contain diopside, sodic plagioclase, epidote, chlorite, analcime, thomsonite, natrolite, albite, quartz, actinolite, sphene, brookite, and sulfides. The presence of zircon, Cl-apatite, sodic plagioclase, sulfides, and diopside in leucocratic veins having local magmatic textures suggests that some of the veins originated from late magmas or from hydrothermal fluids exsolved from such magmas that were subsequently replaced by (seawater-derived) hydrothermal assemblages. The frequent association of these late magmatic intrusive rocks within the brecciated zones suggests that they are both artifacts of magmatic hydrofracture. Such catastrophic fracture and hydrothermal circulation could produce episodic venting of hydrothermal fluids as well as the incorporation of a magmatically derived hydrothermal component. The enhanced permeability of the brecciated zones produced lower temperature assemblages because of larger volumes of seawater that penetrated the crust. The last fractures were sealed either by these hydrothermal minerals or by late carbonate-smectite veins, resulting in the observed low permeability of the core.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Holes drilled into the volcanic and ultrabasic basement of the Izu-Ogasawara and Mariana forearc terranes during Leg 125 provide data on some of the earliest lithosphere created after the start of Eocene subduction in the Western Pacific. The volcanic basement contains three boninite series and one tholeiite series. (1) Eocene low-Ca boninite and low-Ca bronzite andesite pillow lavas and dikes dominate the lowermost part of the deep crustal section through the outer-arc high at Site 786. (2) Eocene intermediate-Ca boninite and its fractionation products (bronzite andesite, andesite, dacite, and rhyolite) make up the main part of the boninitic edifice at Site 786. (3) Early Oligocene intermediate-Ca to high-Ca boninite sills or dikes intrude the edifice and perhaps feed an uppermost breccia unit at Site 786. (4) Eocene or Early Oligocene tholeiitic andesite, dacite, and rhyolite form the uppermost part of the outer-arc high at Site 782. All four groups can be explained by remelting above a subduction zone of oceanic mantle lithosphere that has been depleted by its previous episode of partial melting at an ocean ridge. We estimate that the average boninite source had lost 10-15 wt% of melt at the ridge before undergoing further melting (5-10%) shortly after subduction started. The composition of the harzburgite (<2% clinopyroxene, Fo content of about 92%) indicates that it underwent a total of about 25% melting with respect to a fertile MORB mantle. The low concentration of Nb in the boninite indicates that the oceanic lithosphere prior to subduction was not enriched by any asthenospheric (OIB) component. The subduction component is characterized by (1) high Zr and Hf contents relative to Sm, Ti, Y, and middle-heavy REE, (2) light REE-enrichment, (3) low contents of Nb and Ta relative to Th, Rb, or La, (4) high contents of Na and Al, and (5) Pb isotopes on the Northern Hemisphere Reference Line. This component is unlike any subduction component from active arc volcanoes in the Izu-Mariana region or elsewhere. Modeling suggests that these characteristics fit a trondhjemitic melt from slab fusion in amphibolite facies. The resulting metasomatized mantle may have contained about 0.15 wt% water. The overall melting regime is constrained by experimental data to shallow depths and high temperatures (1250? C and 1.5 kb for an average boninite) of boninite segregation. We thus envisage that boninites were generated by decompression melting of a diapir of metasomatized residual MORB mantle leaving the harzburgites as the uppermost, most depleted residue from this second stage of melting. Thermal constraints require that both subducted lithosphere and overlying oceanic lithosphere of the mantle wedge be very young at the time of boninite genesis. This conclusion is consistent with models in which an active transform fault offsetting two ridge axes is placed under compression or transpression following the Eocene plate reorganization in the Pacific. Comparison between Leg 125 boninites and boninites and related rocks elsewhere in the Western Pacific highlights large regional differences in petrogenesis in terms of mantle mineralogy, degree of partial melting, composition of subduction components, and the nature of pre-subduction lithosphere. It is likely that, on a regional scale, the initiation of subduction involved subducted crust and lithospheric mantle wedge of a range of ages and compositions, as might be expected in this type of tectonic setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An investigation of recent bottom sediments between the Cyprus Island and the Syrian seacoast during Cruise 27 of R/V Vityaz-2 (1993) gave comprehensive field data significantly complementing our understanding of the sedimentation process in this part of the Mediterranean Sea. Mineralogical and geochemical indicators testify to different input into sedimentation of the Syrian and Nile River sources. The Nile River plays a leading role in terrigenous sedimentation in the southeastern Mediterranean Sea, especially in deep-sea areas. In contrast, contribution of weathering products of basalts and ophiolites from the Syrian drainage area (hornblende, monoclinic and rhombic pyroxenes, olivine, spinel, palagonite, and epidote) are particularly detectable in sediments of the near-coast zone. During Late Quaternary contribution of terrigenous material both from the Syrian and Nile sources was irregular in time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acid-sulfate alteration of basalt by SO2-bearing volcanic vapors has been proposed as one possible origin for sulfate-rich deposits on Mars. To better define mineralogical signatures of acid-sulfate alteration, laboratory experiments were performed to investigate alteration pathways and geochemical processes during reaction of basalt with sulfuric acid. Pyroclastic cinders composed of phenocrysts including plagioclase, olivine, and augite embedded in glass were reacted with sulfuric acid at 145 °C for up to 137 days at a range of fluid : rock ratios. During the experiments, the phenocrysts reacted rapidly to form secondary products, while the glass was unreactive. Major products included amorphous silica, anhydrite, and Fe-rich natroalunite, along with minor iron oxides/oxyhydroxides (probably hematite) and trace levels of other sulfates. At the lowest fluid : rock ratio, hexahydrite and an unidentified Fe-silicate phase also occurred as major products. Reaction-path models indicated that formation of the products required both slow dissolution of glass and kinetic inhibitions to precipitation of a number of minerals including phyllosilicates and other aluminosilicates as well as Al- and Fe-oxides/oxyhydroxides. Similar models performed for Martian basalt compositions predict that the initial stages of acid-sulfate alteration of pyroclastic deposits on Mars should result in formation of amorphous silica, anhydrite, Fe-bearing natroalunite, and kieserite, along with relict basaltic glass. In addition, analysis of the experimental products indicates that Fe-bearing natroalunite produces a MÃssbauer spectrum closely resembling that of jarosite, suggesting that it should be considered an alternative to the component in sulfate-rich bedrocks at Meridiani Planum that has previously been identified as jarosite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous fresh ash layers comprise about 0.3% by volume of Neogene to Holocene sediments drilled at Leg 104 Sites 642 and 643 (Vøring Plateau, North Atlantic). Median grain sizes of the ashes are about 100 /µm and maximum grain sizes range up to 1200 µm. Rhyolitic pumice shards dominate, with minor bubble wall shards. Basaltic shards are poorly vesicular and blocky or round. Phenocrystic plagioclase, zircon, and clinopyroxene occur in the rhyolitic, plagioclase, and clinopyroxene phenocrysts and basaltic lithics in the basaltic tephra. Quartz, amphibole, clinozoisite, and rutile are interpreted as xenocrysts. All ash layers are well-sorted and represent distal fallout from major explosive eruptions. Most ashes are rhyolitic (high-K and low-K) in composition, some are bimodal (tholeiitic and rhyolitic). Early Miocene tephra is dominantly basaltic. Iceland is inferred to be the likely source region for most ashes. Late Miocene high-K rhyolites may have originated from the K-rich Jan Mayen magmatic province. One Quaternary layer with biotite and alkali feldspar phenocrysts may have been derived from Jan Mayen Island. Four individual Pliocene to Holocene ash layers from Sites 642 and 643 can be correlated fairly well. Upper Miocene layers are tentatively correlated as a sequence between Sites 642 and 643. Average calculated layer frequencies are about three layers/m.y. through the Pliocene and Pleistocene and five to eight layers per m.y. through the middle and late Miocene, suggesting rather continuous volcanic activity in the North Atlantic. Episodic magmatic activity during Neogene epochs in this part of the North Atlantic, as postulated in the literature, cannot be confirmed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ca. 1880 Ma Circum-Superior Large Igneous Province (LIP) consists of a number of discontinuous segments known to cover a significant portion of the margin of the Superior Province craton in North America. New geochemical and isotopic data from western segments of this LIP support a common origin for the these segments and suggest that magmatism in the Lake Superior region may have been fed through the ~ 600 km long Pickle Crow dyke from a source north of the Fox River Belt in northeastern Manitoba. The Fox River Belt, Pickle Crow dyke and sections of the Hemlock Formation in the Lake Superior region possess trace element signatures which are similar to those of more recent oceanic plateaux. The Hemlock Formation displays a heterogeneous geochemical signature. This chemical heterogeneity can in part be explained by lithospheric contamination and possibly by source heterogeneity. The tectonomagmatic setting in which these igneous rocks were formed could have involved a mantle plume. Evidence supporting a plume origin includes high MgO volcanic rocks, high calculated degrees of partial melting and geochemical signatures similar to those of oceanic plateaux.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The igneous geochemistry of lavas and breccias from the basement of Sites 790 and 791, and pumice clasts from the Pliocene-Pleistocene sedimentary section of Sites 788, 790, 791, and 793 were studied. Arc volcanism became silicic about 1.5 m.y. before the inception of rifting in the Sumisu Rift at 2 Ma, but eruption of these silicic magmas reflects changes in stress regime, especially during the last 130,000 yr, rather than crustal anatexis. Arc magmas have had a larger proportion of slab-derived components since the inception of rifting than before, but are otherwise similar. Rift basalts and rhyolites are derived from a different source than are arc andesites to rhyolites. The rift source has less slab-derived material and is an E-MORB-like source, in contrast to an N-MORB-type source overprinted with more slab-derived material beneath the arc. Rift magma types, in the form of rare pumice and lithic clasts, preceded the rift, and the earliest magmas that erupted in the rift already differed from those of the arc. The earliest large rift eruption produced an exotic explosion breccia ("mousse") despite eruption at >1800 mbsl. Although this rock type is attributed primarily to high magmatic water content, the clasts are more MORB-like in trace element and isotopic composition than are modern Mariana Trough basalts. After rifting began, arc volcanism continued to be predominantly silicic, with individual pumice deposits containing clasts that vary in composition by about 5 wt% SiO2, or about as much as in historical eruptions of submarine Izu Arc volcanoes. The overall variations in magma composition with time during the inception of arc rifting are broadly similar in the Sumisu Rift and Lau Basin, though newly tapped OIB-type mantle seems to be present earlier during basin formation in the Sumisu than Lau case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The compositions of 45 natural basalt glasses from nine dredge stations and six Deep Sea Drilling Project Leg 54 sites near 9°N on the East Pacific Rise have been determined by electron microprobe. These comprise 19 distinct chemical groups. Seventeen of these fall in the range of the eastern Pacific tholeiite suite, which is characterized by marked enrichment in FeO*, TiO2, K2O, and P2O5 as CaO, MgO, and Al2O3 all decrease. Based on trace elements, an estimated 50-75 per cent fractionation of plagioclase, clinopyroxene, and olivine is required to produce ferrobasalts from parental olivine tholeiites. Additional chemical variations occur which require source heterogeneities, differences in the degree of melting, different courses of shallow fractionation, or magma mixing to explain. Glass compositions from within the Siqueiros fracture zone are mostly less fractionated than those from the flanks of the Rise, and show chemical differences which require variations in the depth of melting or highpressure fractionation to explain. Some of them could not be parental to East Pacific Rise flank ferrobasalts. Two remaining glass groups, from dredge hauls atop a ridge and a seamount, respectively, have distinctly higher K2O, P2O5, and TiO2 as well as lower CaO/Al2O3 and SiO2 at corresponding values of MgO than the tholeiite suite. These abundances, and whole-rock Y/Zr, Ce/Y, Nb/Zr, and isotopic abundances indicate that these basalts had a deeper, less depleted mantle source than the Rise tholeiite suite. Trace element abundances preclude the "ridge" basalt type from being a hybrid between the "seamount" basalt type and any East Pacific Rise tholeiite so far analyzed. The East Pacific Rise glasses from 9°N compare very closely to glasses dredged and drilled elsewhere on the East Pacific Rise. However, glass compositions from Site 424 on the Galapagos Rift drilled during Leg 54, as well as glasses and basalts dredged from the Galapagos and Costa Rica rifts, indicate that a greater degree of melting prevailed along much of the Galapagos Spreading Center than anywhere along the East Pacific Rise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports the results of a preliminary palaeomagnetic investigation of the Admiralty Intrusives complex of northern Victoria Land, Antarctica. The samples were collected at Mt. Supernal and Inferno Peak, two pinions mainly formed of granodiorite and minor tonalite and emplaced at ab. 350 Ma at a high crustal level, as shown by amphibole geobarometric data and occurrence of miarolitic cavities. Microprobe and isothermal remanence analyses showed that magnetite. characterized by low coercivity and Curic point in the range 550-570 °C is the only primary ferromagnetic mineral. Stepwise thermaldemagnetization succeeded in isolatingamagnetization component. stable up to 530 °C. The virtual geomagnetic poles (VGPs) of the two plutons are different. That of Inferno Peak is consistent with the Australian palaeopoles of late Devonian-early Carboniferous age, whereas the location of the Mt. Supernal VGP probably results from the tectonic activity which affected the Ross Sea region during the Cenozoic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Great Meteor Seamount (GMS) is a very large (24,000 km**3) guyot with a flat summit plateau at 330-275 m; it has a volcanic core, capped by 150-600 m of post-Middle-Miocene carbonate and pyroclastic rocks, and is covered by bioclastic sands. The much smaller Josephine Seamount (JS, summit 170- 500 m w. d.) consists mainly of basalt which is only locally covered by limestones and bioclastic sands. 2. The bioclastic sands are almost free of terrigenous components, and are well sorted, unimodal medium sands. (1) "Recent pelagic sands" are typical of water depths > 600 m (JS) or > 1000 m (GMS). (2) "Sands of mixed relict-recent origin" (10-40% relict) and (3) "relict sands" (> 40% relict) are highly reworked, coarse lag deposits from the upper flanks and summit tops in which recent constituents are mixed with Pleistocene or older relict material. 3. From the carbonate rocks of both seamounts, 12 "microfacies" (MF-)types were distinguished. The 4 major types are: (1) Bio(pel)sparites (MF 1) occur on the summit plateaus and consist of magnesian calcite cementing small pellets and either redeposited planktonic bioclasts or mixed benthonic-planktonic skeletal debris ; (2) Porous biomicrites (MF 2) are typical of the marginal parts of the summit plateaus and contain mostly planktonic foraminifera (and pteropods), sometimes with redeposited bioclasts and/or coated grains; (3) Dense, ferruginous coralline-algal biomicrudites with Amphistegina sp. (MF 3.1), or with tuffaceous components (MF 3.2); (4) Dense, pelagic foraminiferal nannomicrite (MF 4) with scattered siderite rhombs. Corresponding to the proportion and mineralogical composition of the bioclasts and of the (Mgcalcitic) peloids, micrite, and cement, magnesian calcite (13-17 mol-% MgCO3) is much more abundant than low-Mg calcite and aragonite in rock types (1) and (2). Type (3) contains an "intermediate" Mg-calcite (7-9 mol-X), possibly due to an original Mg deficiency or to partial exsolution of Mg during diagenesis. The nannomicrite (4) consists of low-Mg calcite only. 4. Three textural types of volcanic and associated gyroclastic rocks were distinguished: (1) holohyaline, rapidly chilled and granulated lava flows and tuffs (palagonite tuff breccia and hyaloclastic top breccia); (2) tachylitic basalts (less rapidly chilled; with opaque glass); and (3) "slowly" crystallized, holocrystalline alkali olivine basalts. The carbonate in most mixed pyroclastic-carbonate sediments at the basalt contact is of "post-eruptive" origin (micritic crusts etc.); "pre-eruptive" limestone is recrystallized or altered at the basalt contact. A deuteric (?hydrothermal) "mineralX", filling vesicles in basalt and cementing pyroclastic breccias is described for the first time. 5. Origin and development of GMS andJS: From its origin, some 85 m. y. ago, the volcano of GMS remained active until about 10 m. y. B. P. with an average lava discharge of 320 km**3/m. y. The volcanic origin of JS is much younger (?Middle Tertiary), but the volcanic activity ended also about 9 m. y. ago. During L a t e Miocene to Pliocene times both volcanoes were eroded (wave-rounded cobbles). The oldest pyroclastics and carbonates (MF 3.1, 3.2) were originally deposited in shallow-water (?algal reef hardground). The Plio (-Pleisto) cene foraminiferal nannomicrites (MF 4) suggest a meso- to bathypelagic environment along the flanks of GMS. During the Quaternary (?Pleistocene) bioclastic sands were deposited in water depths beyond wave base on the summit tops, repeatedly reworked, and lithified into loosely consolidated biopelsparites and biomicrites (MF 1 and 2; Fig. 15). Intermediate steps were a first intragranular filling by micrite, reworking, oncoidal coating, weak consolidation with Mg-calcite cemented "peloids" in intergranular voids and local compaction of the peloids into cryptocrystalline micrite with interlocking Mg-calcite crystals up to 4p. The submarine lithification process was frequently interrupted by long intervals of nondeposition, dissolution, boring, and later infilling. The limestones were probably never subaerially exposed. Presently, the carbonate rocks undergo biogenic incrustation and partial dissolution into bioclastic sands. The irregular distribution pattern of the sands reflects (a) the patchy distribution of living benthonic organisms, (b) the steady rain of planktonic organism onto the seamount top, (c) the composition of disintegrating subrecent limestones, and (d) the intensity of winnowing and reworking bottom current

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two basement holes were drilled during Ocean Drilling Program (ODP) Leg 206. Hole 1256C penetrates 88.5 m into basement and Hole 1256D, ~30 m to the south, penetrates 502 m into basement (Wilson, Teagle, Acton, et al., 2003, doi:10.2973/odp.proc.ir.206.2003). Recovered cores consist of basalts exhibiting the effects of low-temperature alteration by seawater. As part of a larger study of alteration effects, a study of the secondary mineralogy was undertaken. This data report presents the major and some minor element compositions of secondary minerals. Analyses focus on the major secondary phases, phyllosilicates, and less abundant feldspars, but also include limited analyses of carbonates and apatite. Different occurrences of secondary minerals are included (e.g., veins and vesicles replacing olivine and plagioclase) as well as variations with depth.