678 resultados para leg thrombosis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

From the equatorial Indian Ocean, carbonate-free portions of sediment samples of Paleocene to Miocene calcareous oozes and chalks from Sites 707, 709, and 711 were studied using X-ray diffraction measurements and the scanning electron microscope. Downhole variations in biogenic opal, quartz, barite, and clinoptilolite were investigated. The abundance patterns of these major mineral phases show several similarities and may be used for additional lithologic correlations. Variations in biogenic opal contents reflect biogenic silica productivity. Beside the general pattern, a succession in biogenic silica decrease through time is generally recorded since the Oligocene. This succession started earliest at northernmost Site 711 and latest at southernmost Site 707, including Site 709 within these two. Opal-A variations as well as the barite distribution may be influenced by the paleoposition of the sites in relation to the high-productivity zone, which today lies south of the equator. Authigenic clinoptilolite apparently formed in two different modes. In deeper sediment intervals, clinoptilolite was the last mineral phase formed associated with enhanced silica diagenesis. In late Oligocene to middle Miocene sediments, clinoptilolite was the only authigenic silica phase encountered where otherwise strong opal dissolution was observed. The sponge spicules showed special dissolution features probably related to microbiological activity. Silica concretions mainly composed of opal-CT and authigenic quartz occur in carbonate-rich environments and are formed during later diagenesis when burial depth causes the sediments to reach higher temperatures. Opal-CT concretions in carbonate-free siliceous oozes were found at Site 711 and are probably formed during an early stage of silica diagenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three sites were drilled in the Izu-Bonin forearc basin during Ocean Drilling Program (ODP) Leg 126. High-quality formation microscanner (FMS) data from two of the sites provide images of part of a thick, volcaniclastic, middle to upper Oligocene, basin-plain turbidite succession. The FMS images were used to construct bed-by-bed sedimentary sections for the depth intervals 2232-2441 m below rig floor (mbrf) in Hole 792E, and 4023-4330 mbrf in Hole 793B. Beds vary in thickness from those that are near or below the resolution of the FMS tool (2.5 cm) to those that are 10-15 m thick. The bed thicknesses are distributed according to a power law with an exponent of about 1.0. There are no obvious upward thickening or thinning sequences in the bed-by-bed sections. Spaced packets of thick and very thick beds may be a response to (1) low stands of global sea level, particularly at 30 Ma, (2) periods of increased tectonic uplift, or (3) periods of more intense volcanism. Graded sandstones, most pebbly sandstones, and graded to graded-stratified conglomerates were deposited by turbidity currents. The very thick, mainly structureless beds of sandstone, pebbly sandstone, and pebble conglomerate are interpreted as sandy debris-flow deposits. Many of the sediment gravity flows may have been triggered by earthquakes. Long recurrence intervals of 0.3-1 m.y. for the very thickest beds are consistent with triggering by large-magnitude earthquakes (M = 9) with epicenters approximately 10-50 km away from large, unstable accumulations of volcaniclastic sand and ash on the flanks of arc volcanoes. Paleocurrents were obtained from the grain fabric of six thicker sandstone beds, and ripple migration directions in about 40 thinner beds; orientations were constrained by the FMS images. The data from ripples are very scattered and cannot be used to specify source positions. They do, however, indicate that the paleoenvironment was a basin plain where weaker currents were free to follow a broad range of flow paths. The data from sandstone fabric are more reliable and indicate that turbidity currents flowed toward 150? during the time period from 28.9 to 27.3 Ma. This direction is essentially along the axis of the forearc basin, from north to south, with a small component of flow away from the western margin of the basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary and secondary mineral phases from Holes 1268A (11 samples), 1272A (9 samples), and 1274A (12 samples) were analyzed by electron microprobe in Bonn and Cologne (Germany). Bulk rock powders of these samples were also analyzed geochemically, including major and trace elements (Paulick et al., 2006, doi:10.1016/j.chemgeo.2006.04.011). Ocean Drilling Program (ODP) Leg 209 Holes 1268A, 1272A, and 1274A differ remarkably in alteration intensity and mineralogy, and details regarding their lithologic characteristics are presented in Bach et al. (2004, doi:10.1029/2004GC000744) and Shipboard Scientific Party (2004, doi:10.2973/odp.proc.ir.209.101.2004). Because of the least altered character of peridotite in Hole 1274A, abundant clinopyroxene, orthopyroxene, olivine, and spinel were analyzed at this site. In Hole 1272A, primary silicates are rare and analyses were restricted to some samples that contain traces of olivine and orthopyroxene. Because of the intensity of alteration, Hole 1268A is devoid of primary phases except spinel. Commonly, alteration is pseudomorphic and serpentinization of olivine and orthopyroxene can be distinguished. Accordingly, compositional variations of the alteration minerals with regard to the precursor minerals are one of the issues investigated in this data report.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stress history, permeability, and compressibility of sediments from Demerara Rise recovered during Ocean Drilling Program Leg 207 were determined using one-dimensional incremental load consolidation and low-gradient flow pump permeability tests. Relationships among void ratio, effective stress, and hydraulic conductivity are presented for sampled lithologic units and used to reconstruct effective stress, permeability, and in situ void ratio profiles for a transect of three sites across Demerara Rise. Results confirm that a significant erosional event occurred on the northeastern flank of the rise during the late Miocene, resulting in the removal of ~220 m of upper Oligocene-Miocene deposits. Although Neogene and Paleogene sediments tend to be overconsolidated, Cretaceous sediments are normally consolidated to underconsolidated, suggesting the presence of overpressure. A pronounced drop in permeability occurs at the transition from the Cretaceous black shales into the overlying Maastrichtian-upper Paleocene chalks and clays. The development of a hydraulic seal at this boundary may be responsible for overpressure in the Cretaceous deposits, leading to the lower overconsolidation ratios of these sediments. Coupled with large regional variations in sediment thickness (overburden stresses), the higher permeability overpressured Cretaceous sediments represent a regional lateral fluid conduit on Demerara Rise, possibly venting methane-rich fluids where it outcrops on the margin's northeastern flank.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiolarians were observed at all five sites drilled during DSDP Leg 58. Three sites (442, 443, 444) are south of Japan in the Shikoku Basin. The remaining two sites (445, 446) are east of Okinawa, in the Daito Ridge and Basin areas. The observations made on radiolarians during Leg 58 are understood best by considering these two areas separately. The basement ages, preservation, diagenesis, and paleoecology are similar within each area, but different between the two areas. The radiolarian zones of Riedel and Sanfilippo (1978) were used to determine the sediment age. Because of the mixed nature of the fauna, there was an opportunity to test the tropical zonation in middlelatitude sediments. A middle- to high-latitude biostratigraphy for the Pliocene and Pleistocene has been formulated (Hays, 1970; Kling, 1973; Foreman, 1975), but there is no Miocene radiolarian zonation for these latitudes. The tropical elements of the present fauna are sufficient to use the low-latitude zonation, although there is a loss of resolution in the Pleistocene. Because of poor preservation, zone boundaries are indistinct in much of the cored sediment. Determination of abundance in any sample is always subjective and varies among investigators. This work was in its final stages at the publication of Westberg and Riedel (1978), and the guidelines outlined therein are not closely followed. The abundances recorded in Tables 1 through 5 are based on strewn slides which were searched entirely if an individual of a species was found, or for 8 to 10 minutes if the species was not found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geochemical investigations were carried out on 19 discrete ash layers and on 42 dispersed ash accumulations in Oligocene to Pleistocene sediments from Sites 736, 737, 745, and 746 of ODP Leg 119 (Kerguelen Plateau in the southern Indian Ocean). The chemical data obtained from more than 500 single-grain glass analyses allow the characterization of two dominant petrographic rock series. The first consists of transitional- to alkali-basalts, the second mainly of trachytes with subordinated alkali-rhyolites and rhyolites. Chemical correlation with possible source areas indicates that the tephra layers from the northern Kerguelen Plateau Sites 736 and 737 were probably erupted from the nearby Kerguelen Islands. The investigated ash layers clearly reflect the Oligocene to recent changes in the composition of the volcanic material recorded from the Kerguelen Islands. The dispersed ashes from Sites 745 and 746 in the Australian-Antarctic Basin display almost the same range in chemical compositions as those from the north. Heard Island and other sources may have contributed to their formation, in addition to the Kerguelen Islands. Dispersed ash of calc-alkaline composition is most probably derived from the South Sandwich island arc, indicating sea-ice rafting as an important mechanism of transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sixty-five chert, porcellanite, and siliceous-chalk samples from Deep Sea Drilling Project Leg 62 were analyzed by petrography, scanning electron microscopy, analysis by energy-dispersive X-rays, X-ray diffraction, X-ray spectroscopy, and semiquantitative emission spectroscopy. Siliceous rocks occur mainly in chalks, but also in pelagic clay and marlstone at Site 464. Overall, chert probably constitutes less than 5% of the sections and occurs in deposits of Eocene to Barremian ages at sub-bottom depths of 10 to 820 meters. Chert nodules and beds are commonly rimmed by quartz porcellanite; opal-CT-rich rocks are minor in Leg 62 sediments 65 to 108 m.y. old and at sub-bottom depths of 65 to 520 meters. Chert ranges from white to black, shades of gray and brown being most common; yellow-brown and red-brown jaspers occur at Site 464. Seventy-eight percent of the studied cherts contain easily recognizable burrow structures. The youngest chert at Site 463 is a quartz cast of a burrow. Burrow silica maturation is always one step ahead of host-rock silicification. Burrows are commonly loci for initial silicification of the host carbonate. Silicification takes place by volume-f or-volume replacement of carbonate sediment, and more-clay-rich sediment at Site 464. Nannofossils are commonly pseudomorphically replaced by quartz near the edges of chert beds and nodules. Other microfossils, mostly radiolarians and foraminifers, whether in chalk or chert, can be either filled with or replaced by calcite, opal-CT, and (or) quartz. Chemical micro-environments ultimately control the removal, transport, and precipitation of calcite and silica. Two cherts from Site 465 contain sulfate minerals replaced by quartz. Site 465 was never subaerially exposed after sedimentation began, and the formation of the sulfate minerals and their subsequent replacement probably occurred in the marine environment. Several other cherts with odd textures are described in this paper, including (1) a chert breccia cemented by colloform opal-CT and chalcedony, (2) a transition zone between white porcellanite containing opal-CT and quartz and a burrowed brown chert, consisting of radial aggregates of opal-CT with hollow centers, and (3) a chert that consists of silica-replaced calcite pseudospherules interspersed with streaks and circular masses of dense quartz. X-ray-diffraction analyses show that when data from all sites are considered there are poorly defined trends indicating that older cherts have better quartz crystallinity than younger ones, and that opal-CT crystallite size increases and opal-CT cf-spacings decrease with depth of occurrence in the sections. In a general way, depth of burial and the presence of calcite promote the ordering in the opal-CT crystal structure which allows its eventual conversion to quartz. Opal-CT in porcellanites converts to quartz after reaching a minimum d-spacing of 4.07 Å. Quartz/opal-CT ratios and quartz crystallinity vary randomly on a fine scale across four chert beds, but quartz crystallinity increases from the edge to the center of a fifth chert bed; this may indicate maturation of the silica. Twenty-four rocks were analyzed for their major- and minor-element compositions. Many elements in cherts are closely related to major mineral components. The carbonate component is distinguished by high values of CaO, MgO, Mn, Ba, Sr, and (for unknown reasons) Zr. Tuffaceous cherts have high values of K and Al, and commonly Zn, Mo, and Cr. Pure cherts are characterized by high SiO2 and B. High B may be a good indicator of formation of chert in an open marine environment, isolated from volcanic and terrigenous materials.