582 resultados para 102-1
Resumo:
Meltponds on Arctic sea ice have previously been reported to be devoid of marine metazoans due to fresh-water conditions. The predominantly dark frequently also green and brownish meltponds observed in the Central Arctic in summer 2007 hinted to brackish conditions and considerable amounts of algae, possibly making the habitat suitable for marine metazoans. Environmental conditions in meltponds as well as sympagic meiofauna in new ice covering pond surfaces and in rotten ice on the bottom of ponds were studied, applying modified techniques from sea-ice and under-ice research. Due to the very porous structure of the rotten ice, the meltponds were usually brackish to saline, providing living conditions very similar to sub-ice water. The new ice cover on the surface had similar characteristics as the bottom layer of level ice. The ponds were thus accessible to and inhabitable by metazoans. The new ice cover and the rotten ice were inhabited by various sympagic meiofauna taxa, predominantly ciliates, rotifers, acoels, nematodes and foraminiferans. Also, sympagic amphipods were found on the bottom of meltponds. We suggest that, in consequence of global warming, brackish and saline meltponds are becoming more frequent in the Arctic, providing a new habitat to marine metazoans.
Resumo:
The assemblages inhabiting the continental shelf around Antarctica are known to be very patchy, in large part due to deep iceberg impacts. The present study shows that richness and abundance of much deeper benthos, at slope and abyssal depths, also vary greatly in the Southern and South Atlantic oceans. On the ANDEEP III expedition, we deployed 16 Agassiz trawls to sample the zoobenthos at depths from 1055 to 4930 m across the northern Weddell Sea and two South Atlantic basins. A total of 5933 specimens, belonging to 44 higher taxonomic groups, were collected. Overall the most frequent taxa were Ophiuroidea, Bivalvia, Polychaeta and Asteroidea, and the most abundant taxa were Malacostraca, Polychaeta and Bivalvia. Species richness per station varied from 6 to 148. The taxonomic composition of assemblages, based on relative taxon richness, varied considerably between sites but showed no relation to depth. The former three most abundant taxa accounted for 10-30% each of all taxa present. Standardised abundances based on trawl catches varied between 1 and 252 individuals per 1000 m2. Abundance significantly decreased with increasing depth, and assemblages showed high patchiness in their distribution. Cluster analysis based on relative abundance showed changes of community structure that were not linked to depth, area, sediment grain size or temperature. Generally abundances of zoobenthos in the abyssal Weddell Sea are lower than shelf abundances by several orders of magnitude.
Resumo:
Core-top samples from the eastern tropical Pacific (10°N to 20°S) were used to test whether the ratio between Globorotalia menardii cultrata and Neogloboquadrina dutertrei abundance (Rc/d) and the oxygen isotope composition (?18O) of planktonic foraminifera can be used as proxies for the latitudinal position of the Equatorial Front. Specifically, this study compares the ?18O values of eight species of planktonic foraminifera (Globigerinoides ruber sensu stricto (ss) and sensu lato (sl), Globigerinoides sacculifer, Globigerinoides triloba, Pulleniatina obliquiloculata, Neogloboquadrina dutertrei, Globorotalia menardii menardii, Globorotalia menardii cultrata and Globorotalia tumida) with the seasonal hydrography of the region, and evaluates the application of each species or combination of species for paleoceanographic reconstructions. The results are consistent with sea surface temperature and water column stratification patterns. We found that in samples north of 1°N, the Rc/d values tend to be higher and d18O values of G. ruber, G. sacculifer, G. triloba, P. obliquiloculata, N. dutertrei, and G. menardii cultrata tend to be lower than those from samples located south of 1°N. We suggest that the combined use of Rc/d and the d18O difference between G. ruber and G. tumida or between P. obliquiloculata and G. tumida are the most suitable tools for reconstructing changes in the latitudinal position of the Equatorial Front and changes in the thermal stratification of the upper water column in the eastern tropical Pacific.
Resumo:
Hydroxylated glycerol dialkyl glycerol tetraethers (hydroxy-GDGTs) were detected in marine sediments of diverse depositional regimes and ages. Mass spectrometric evidence, complemented by information gleaned from two-dimensional (2D) 1H-13C nuclear magnetic resonance (NMR) spectroscopy on minute quantities of target analyte isolated from marine sediment, allowed us to identify one major compound as a monohydroxy-GDGT with acyclic biphytanyl moieties (OH-GDGT-0). NMR spectroscopic and mass spectrometric data indicate the presence of a tertiary hydroxyl group suggesting the compounds are the tetraether analogues of the widespread hydroxylated archaeol derivatives that have received great attention in geochemical studies of the last two decades. Three other related compounds were assigned as acyclic dihydroxy-GDGT (2OH-GDGT-0) and monohydroxy-GDGT with one (OH-GDGT-1) and two cyclopentane rings (OH-GDGT-2). Based on the identification of hydroxy-GDGT core lipids, a group of previously reported unknown intact polar lipids (IPLs), including the ubiquitously distributed H341-GDGT (Lipp J. S. and Hinrichs K. -U. (2009) Structural diversity and fate of intact polar lipids in marine sediments. Geochim. Cosmochim. Acta 73, 6816-6833), and its analogues were tentatively identified as glycosidic hydroxy-GDGTs. In addition to marine sediments, we also detected hydroxy-GDGTs in a culture of Methanothermococcus thermolithotrophicus. Given the previous finding of the putative polar precursor H341-GDGT in the planktonic marine crenarchaeon Nitrosopumilus maritimus, these compounds are synthesized by representatives of both cren- and euryarchaeota. The ubiquitous distribution and apparent substantial abundance of hydroxy-GDGT core lipids in marine sediments (up to 8% of total isoprenoid core GDGTs) point to their potential as proxies.
Resumo:
Reactive iron (oxyhydr)oxide minerals preferentially undergo early diagenetic redox cycling which can result in the production of dissolved Fe(II), adsorption of Fe(II) onto particle surfaces, and the formation of authigenic Fe minerals. The partitioning of iron in sediments has traditionally been studied by applying sequential extractions that target operationally-defined iron phases. Here, we complement an existing sequential leaching method by developing a sample processing protocol for d56Fe analysis, which we subsequently use to study Fe phase-specific fractionation related to dissimilatory iron reduction in a modern marine sediment. Carbonate-Fe was extracted by acetate, easily reducible oxides (e.g. ferrihydrite and lepidocrocite) by hydroxylamine-HCl, reducible oxides (e.g. goethite and hematite) by dithionite-citrate, and magnetite by ammonium oxalate. Subsequently, the samples were repeatedly oxidized, heated and purified via Fe precipitation and column chromatography. The method was applied to surface sediments collected from the North Sea, south of the Island of Helgoland. The acetate-soluble fraction (targeting siderite and ankerite) showed a pronounced downcore d56Fe trend. This iron pool was most depleted in 56Fe close to the sediment-water interface, similar to trends observed for pore-water Fe(II). We interpret this pool as surface-reduced Fe(II), rather than siderite or ankerite, that was open to electron and atom exchange with the oxide surface. Common extractions using 0.5 M HCl or Na-dithionite alone may not resolve such trends, as they dissolve iron from isotopically distinct pools leading to a mixed signal. Na-dithionite leaching alone, for example, targets the sum of reducible Fe oxides that potentially differ in their isotopic fingerprint. Hence, the development of a sequential extraction Fe isotope protocol provides a new opportunity for detailed study of the behavior of iron in a wide-range of environmental settings.
Resumo:
Sapropels -organic-matter rich layers- are common in Neogene sediments of the eastern Mediterranean Sea. The formation of these layers has been attributed to climate-related increases in organic-matter production (Calvert et al., 1992, doi:10.1038/359223a0; Rossignol-Strick et al., 1982, doi:10.1038/295105a0; Rohling, 1994, doi:10.1016/0025-3227(94)90202-X) and increased organic-matter preservation due to oxygen depletion in more stagnant bottom waters (Rossignol-Strick et al., 1982, doi:10.1038/295105a0; Rohling, 1994, doi:10.1016/0025-3227(94)90202-X). Here we report that eastern Mediterranean Pliocene sapropels (Emeis et al., 1996, doi:10.2973/odp.proc.ir.160.102.1996) contain molecular fossils of a compound (isorenieratene) known to be synthesized by photosynthetic green sulphur bacteria, suggesting that sulphidic (euxinic) -and therefore anoxic- conditions prevailed in the photic zone of the water column. These sapropels also have a high trace-metal content, which is probably due to the efficient scavenging of these metals by precipitating sulphides in a euxinic water column. The abundance and sulphur-isotope composition of pyrite are consistent with iron sulphide formation in the water column. We conclude that basin-wide water-column euxinia occurred over substantial periods during Pliocene sapropel formation in the eastern Mediterranean Sea, and that the ultimate degradation of the increased organic-matter production was strongly influential in generating and sustaining the euxinic conditions.