613 resultados para 065
Resumo:
Extensive investigations of sedimentary barium were performed in the southern South Atlantic in order to assess the reliability of the barium signal in Antarctic sediments as a proxy for paleoproductivity. Maximum accumulation rates of excess barium were calculated for the Antarctic zone south of the polar front where silica accumulates at high rates. The correspondence between barium and opal supports the applicability of barium as a proxy for productivity. Within the Antarctic zone north of today's average sea ice maximum, interglacial vertical rain rates of excess barium are high, with a maximum occurring during the last deglaciation and early Holocene and during oxygen isotope chronozone 5.5. During these periods, the maximum silica accumulation was supposedly located south of the polar front. Glacial paleoproductivity, instead, was low within the Antarctic zone. North of the polar front, significantly higher barium accumulation occurs during glacial times. The vertical rain rates, however, are as high as in the glacial Antarctic zone. Therefore there was no evidence for an increased productivity in the glacial Southern Ocean.
Resumo:
Since the inception of the international GEOTRACES program, studies investigating the distribution of trace elements and their isotopes in the global ocean have significantly increased. In spite of this large-scale effort, the distribution of neodymium isotopes (143Nd/144Nd) and concentrations ([Nd]) in the high latitude south Pacific is still understudied. Here we report dissolved Nd isotopes and concentrations from 11 vertical water column profiles from the south Pacific between South America and New Zealand. Results suggest that Ross Sea Bottom Water (RSBW) is represented by an epsilon-Nd value of ~ -7, and is thus more radiogenic than Circumpolar Deep Water (epsilon-Nd ~ -8). RSBW and its characteristic epsilon-Nd signature can be traced far into the SE Pacific until progressive mixing with ambient Lower Circumpolar Deep water (LCDW) dilutes this signal north of the Antarctic Polar Front (APF). The SW-NE trending Pacific-Antarctic Ridge restricts the advection of RSBW into the SW Pacific, where bottom water density, salinity, and epsilon-Nd values of -9 indicate the presence of bottom waters of an origin different from the Ross Sea. Neodymium concentrations show low surface concentrations and a linear increase with depth north of the Polar Front. South of the APF, surface [Nd] is high and increases with depth but remains almost constant below ~1000 m. This vertical and spatial [Nd] pattern follows the southward shoaling density surfaces of the Southern Ocean frontal system and hence suggests supply of Nd to the upper ocean through upwelling of Nd-rich deep water. Low particle abundance dominated by reduced opal production and seasonal sea ice cover likely contributes to the maintenance of the high upper ocean [Nd] south of the APF. The reported data highlights the use of Nd isotopes as a water mass tracer in the Southern Ocean, with the potential for paleocenaographic reconstructions, and contributes to an improved understanding of Nd biogeochemistry.
Resumo:
A set of 114 samples from the sediment surface of the Atlantic, eastern Pacific and western Indian sectors of the Southern Ocean has been analyzed for 230Th and biogenic silica. Maps of opal content, Th-normalized mass flux, and Th-normalized biogenic opal flux into the sediment have been derived. Significant differences in sedimentation patterns between the regions can be detected. The mean bulk vertical fluxes integrated into the sediment in the open Southern Ocean are found in a narrow range from 2.9 g/m**2 yr (Eastern Weddell Gyre) to 15.8 g/m**2 yr (Indian sector), setting upper and lower limits to the vertically received fraction of open ocean sediments. The silica flux to sediments of the Atlantic sector of the Southern Ocean is found to be 4.2 ± 1.4 * 10**11 mol/yr, just one half of the last estimate. This adjustment represents 6% of the output term in the global marine silica budget.
Resumo:
We analyzed hydrographic data from the northwestern Weddell Sea continental shelf of the three austral winters 1989, 1997, and 2006 and two summers following the last winter cruise. During summer a thermal front exists at ~64° S separating cold southern waters from warm northern waters that have similar characteristics as the deep waters of the central basin of the Bransfield Strait. In winter, the whole continental shelf exhibits southern characteristics with high Neon (Ne) concentrations, indicating a significant input of glacial melt water. The comparison of the winter data from the shallow shelf off the tip of the Antarctic Peninsula, spanning a period of 17 yr, shows a salinity decrease of 0.09 for the whole water column, which has a residence time of <1 yr. We interpret this freshening as being caused by a combination of reduced salt input due to a southward sea ice retreat and higher precipitation during the late 20th century on the western Weddell Sea continental shelf. However, less salinification might also result from a delicate interplay between enhanced salt input due to sea ice formation in coastal areas formerly occupied by Larsen A and B ice shelves and increased Larsen C ice loss.
Resumo:
TEX86 (TetraEther indeX of tetraethers consisting of 86 carbon atoms) is a sea surface temperature (SST) proxy based on the distribution of archaeal isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs). In this study, we appraise the applicability of TEX86 and TEX86L in subpolar and polar regions using surface sediments. We present TEX86 and TEX86L data from 160 surface sediment samples collected in the Arctic, the Southern Ocean and the North Pacific. Most of the SST estimates derived from both TEX86 and TEX86L are anomalously high in the Arctic, especially in the vicinity of Siberian river mouths and the sea ice margin, plausibly due to additional archaeal contributions linked to terrigenous input. We found unusual GDGT distributions at five sites in the North Pacific. High GDGT-0/crenarchaeol and GDGT-2/crenarchaeol ratios at these sites suggest a substantial contribution of methanogenic and/or methanotrophic archaea to the sedimentary GDGT pool here. Apart from these anomalous findings, TEX86 and TEX86L values in the surface sediments from the Southern Ocean and the North Pacific do usually vary with overlaying SSTs. In these regions, the sedimentary TEX86-SST relationship is similar to the global calibration, and the derived temperature estimates agree well with overlaying annual mean SSTs at the sites. However, there is a systematic offset between the regional TEX86L-SST relationships and the global calibration. At these sites, temperature estimates based on the global TEX86L calibration are closer to summer SSTs than annual mean SSTs. This finding suggests that in these subpolar settings a regional TEX86L calibration may be a more suitable equation for temperature reconstruction than the global calibration.