662 resultados para Suboxic Sediment Layer


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on models and proxy data it has been proposed that salinity-driven stratification weakened in the subarctic North Pacific during the last deglaciation, which potentially contributed to the deglacial rise in atmospheric carbon dioxide. We present high-resolution subsurface temperature (TMg/Ca) and subsurface salinity-approximating (d18Oivc-sw) records across the last 20,000 years from the subarctic North Pacific and its marginal seas, derived from combined stable oxygen isotopes and Mg/Ca ratios of the planktonic foraminiferal species Neogloboquadrina pachyderma (sin.). Our results indicate regionally differing changes of subsurface conditions. During the Heinrich Stadial 1 and the Younger Dryas cold phases our sites were subject to reduced thermal stratification, brine rejection due to sea-ice formation, and increased advection of low-salinity water from the Alaskan Stream. In contrast, the Bølling-Allerød warm phase was characterized by strengthened thermal stratification, stronger sea-ice melting, and influence of surface waters that were less diluted by the Alaskan Stream. From direct comparison with alkenone-based sea surface temperature estimates (SSTUk'37), we suggest deglacial thermocline changes that were closely related to changes in seasonal contrasts and stratification of the mixed layer. The modern upper-ocean conditions seem to have developed only since the early Holocene.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the nodule field of the Peru Basin, situated south of the zone of high bioproductivity, a relatively high flux of biogenic matter explains a distinct redox boundary at about 10 cm depth separating very soft oxic surface sediments from stiffer suboxic sediments. Maximum abundance (50 kg/m**2) of diagenetic nodules is found near the calcite compensation depth (CCD), currently at 4250 m. There, the accretion rate of nodules is much higher (100 mm/Ma) than on ridges (5 mm/Ma). Highest accretion rates are found at the bottom of large nodules that repeatedly sink to a level immediately above the redox boundary. There, distinct diagenetic growth conditions prevail and layers of dense laminated Mn oxide of very pure todorokite are formed. The layering of nodules is mainly the result of organisms moving nodules within the oxic surface sediment from diagenetic to hydrogenetic environments. The frequency of such movements is much higher than that of climatic changes. Two types of nodule burial occur in the Peru Basin. Large nodules are less easily moved by organisms and become buried. Consequently, buried nodules generally are larger than surface nodules. This type of burial predominates in basins. At ridges where smaller nodules prevail, burial is mainly controlled by statistical selection where some nodules are not moved up by organisms.