553 resultados para MgO
Resumo:
The hydrothermal mounds on the southern flank of the Galapagos Spreading Center are characterized by the following main features: 1) They are located over a young basement (0.5 to 0.85 m.y. of age) in a region known for its high sedimentation rate (about 5 cm/10**3 y.) because it is part of the equatorial high biological productivity zone. 2) They are located in a region with generally high heat flow (8 to 10 HFU). The highest heat-flow measurements (up to 10**3 HFU) correspond to mound peaks (Williams et al., 1979), where temperatures up to 15°C were measured during a dive of the submersible Alvin (Corliss et al., 1978). 3) They are often located on small vertical faults which displace the basement by a few meters (Lonsdale, 1977) and affect the 25- to 50-meter-thick sediment cover. Most of these characteristics have also been observed in the other three known cases of hydrothermal deposits with mineral parageneses similar to that of the Galapagos mounds. However, the case of the hydrothermal mounds south of the Galapagos Spreading Center is unique because of the unusual thickness of the hydrothermal deposits present. The mounds are composed of several, up to 4.5-meter-thick, layers of green clays which, in one case (Hole 509B), are overlain by about 1.4 meters of Mn-oxide crust. We suspect that such a large accumulation of hydrothermal products results from the "funnelling" of the hydrothermal solutions exiting from a highly permeable basement along the faults. This chapter reports a preliminary study of those green clays collected by hydraulic piston coring of the Galapagos mounds during Deep Sea Drilling Project (DSDP) Leg 70 of the D/V Glomar Challenger. Green clays have also been reported from three presently or recently active hydrothermal areas in or close to spreading centers.
Resumo:
The geological history of Filchnerfjella and surrounding areas (2°E to 8°E) in central Dronning Maud Land, East Antarctica, is constructed from metamorphic and igneous petrology, and structural investigations. The geology of Filchner-fjella consists mainly of metamorphic rocks accompanied by intrusive rocks. Two stages of metamorphism can be recognized in this area. The earlier stage metamorphism is defined as a porphyroblast stage (garnet, hornblende, and sillimanite stable), and the later one is recognized as a symplectic stage (orthopyroxene and cordieritestable). Taking metamorphic textures and geothermobarometries into account, the rocks experienced an early high-P/medium-T followed by a low-P and high-T stage. Partial melting took place during the low-P/high-T stage, because probable melt of leucocratic gneiss contains cordierite. The field relationships and petrography of the syenite at Filchnerfjella are similar to those of post-tectonic plutons from central Dronning Maud Land, and most of the post-tectonic intrusive rocks have within-plate geochemical features. The structural history in Filchnerfjella and surrounding areas can be divided into the Pan-African stage and the Meso to Cenozoic stage that relates to the break-up of Gondwana.
Resumo:
The "Ko'olau" component of the Hawaiian mantle plume represents an extreme (EM1-type) end member of Hawaiian shield lavas in radiogenic isotope space, and was defined on the basis of the composition of subaerial lavas exposed in the Makapu'u section of Ko'olau Volcano. The 679 m-deep Ko'olau Scientific Drilling Project (KSDP) allows the long-term evolution of Ko'olau Volcano to be reconstructed and the longevity of the "Ko'olau" component in the Hawaiian plume to be tested. Here, we report triple spike Pb isotope and Sr and Nd isotope data on KSDP core samples, and rejuvenation stage Honolulu Volcanics (HV) (together spanning ~2.8 m.y.), and from ~110 Ma basalts from ODP Site 843, thought to be representative of the Pacific lithosphere under Hawai'i. Despite overlapping ranges in Pb isotope ratios, KSDP and HV lavas form two distinct linear arrays in 208Pb/204Pb-206Pb/204Pb isotope space. These arrays intersect at the radiogenic end indicating they share a common component. This "Kalihi" component has more radiogenic Pb, Nd, Hf, but less radiogenic Sr isotope ratios than the "Makapu'u" component. The mixing proportions of these two components in the lavas oscillated through time with a net increase in the "Makapu'u" component upsection. Thus, the "Makapu'u" enriched component is a long-lived feature of the Hawaiian plume, since it is present in the main shield-building stage KSDP lavas. We interpret the changes in mixing proportions of the Makapu'u and Kalihi components as related to changes in both the extent of melting as well as the lithology (eclogite vs. peridotite) of the material melting as the volcano moves away from the plume center. The long-term Nd isotope trend and short-term Pb isotope fluctuations seen in the KSDP record cannot be ascribed to a radial zonation of the Hawaiian plume: rather, they reflect the short length-scale heterogeneities in the Hawaiian mantle plume. Linear Pb isotope regressions through the HV, recent East Pacific Rise MORB and ODP Site 843 datasets are clearly distinct, implying that no simple genetic relationship exists between the HV and the Pacific lithosphere. This observation provides strong evidence against generation of HV as melts derived from the Pacific lithosphere, whether this be recent or old (100 Ma). The depleted component present in the HV is unlike any MORB-type mantle and most likely represents material thermally entrained by the upwelling Hawaiian plume and sampled only during the rejuvenated stage. The "Kalihi" component is predominant in the main shield building stage lavas but is also present in the rejuvenated HV. Thus this material is sampled throughout the evolution of the volcano as it moves from the center (main shield-building stage) to the periphery (rejuvenated stage) of the plume. The presence of a plume-derived material in the rejuvenated stage has significant implications for Hawaiian mantle plume melting models.
Resumo:
Middle Miocene to Holocene fine-grained argillaceous sediments (clays, claystones/muds, and mudstones), which volumetrically dominated the sediment recovery in the Woodlark Basin during Leg 180, were chemically analyzed for major elements, trace elements, and some rare earth elements by X-ray fluorescence. Selected samples also underwent X-ray diffraction (XRD) analysis for mineral determination. The results shed light on sediment provenance when combined with shipboard sediment descriptions, smear slide study, and XRD. The oldest sediments recovered (Site 1108) of middle-late Miocene age include volcanogenic muds with distinctive high MgO and K2O, indicative of a relatively basic calc-alkaline source related to an inferred Miocene forearc succession. The forearc basement, composed of diabase and basalt, was locally exposed (Site 1109) and eroded in the late Miocene (<5.4-9.93 Ma), giving rise to fluvial conglomerates (Sites 1109, 1115, and 1118). Chemically distinctive fine-grained claystones and siltstones (with relatively high Ti, low K) are compatible with derivation from tropically weathered basic igneous rocks, correlated with the Paleogene Papuan ophiolite. Overlying latest Miocene-Pleistocene fine-grained sediments throughout the Woodlark Basin were partly derived from calc-alkaline volcanic sources. However, relatively high abundances of Al2O3 and related element oxides (K2O and Na2O) and trace elements (e.g., Rb and Y) reflect an additional terrigenous input throughout the basin, correlated with pelitic metamorphic rocks exposed on Papua New Guinea and adjacent areas. In addition, sporadic high abundances of Cr and Ni, some other trace metals, and related minerals (talc, crysotile, and chlorite) reflect input from an ophiolitic terrain dominated by ultramafic rocks, correlated with the Paleogene Papuan ophiolite. The source areas possibly included serpentinized ultramafic ophiolitic rocks exposed in the Papua New Guinea interior highlands. Chemical evidence further indicates that fine-grained terrigenous sediment reached the Woodlark Basin throughout its entire late Miocene-Holocene history. Distinctive high-K volcanogenic muds rich in tephra and volcanic ash layers that appear at <2.3 Ma (Sites 1109 and 1115) are indicative of high-K calc-alkaline volcanic centers, possibly located in the Dawson Strait, Moresby Strait, or Dobu Seamount area. Chemical diagenesis of fine-grained sediments within the Woodlark Basin is reflected in clay neomorphism and localized formation of minerals including dolomite, ankerite, and zeolite but has had little effect on the bulk chemical composition of most samples.
Resumo:
Mineralogical and major-element compositions of 72 samples of volcanic ash, recovered from Site 808 at Nankai Trough during Leg 131, were analyzed in relation to the early diagenetic alteration. Alteration products are first observed at the following depths: smectite, 200 mbsf; clinoptilolite, 646 mbsf; and analcite, 810 mbsf. Glass decomposition dominates over authigenic mineral formation between 200 and 550 mbsf in the sediment column, whereas mineral formation becomes dominant below 550 mbsf. Based on the X-ray diffraction patterns, a broad and asymmetric peak of 15A suggests a presence of illite/smectite (I/S) mixed-layered minerals in a sample from 646 mbsf. I/S mixed-layered mineral formation, however, rarely occurs even at the bottom of the sediment column (1290 mbsf) at 120° C. This is possibly because zeolite (especially clinoptilolite) formed in the ash interferes with illite formation in the smectite. The formation of alteration minerals affects the major-element chemistry of the ash and the interstitial waters. H4SiO4 concentrations in interstitial waters increase during glass decomposition and decrease with smectite and clinoptilolite formation. K is removed from interstitial water into smectite and/or clinoptilolite. Mg is fixed into smectite (and/or chlorite).
Resumo:
The Leg 173 Site 1067 and 1068 amphibolites and metagabbros from the west Iberia margin exhibit variable whole-rock compositions from primitive to more evolved (Mg numbers = 49-71) that are generally incompatible trace and rare earth element enriched (light rare earth element [LREE] = 11-89 x chondrite). The Site 1067 amphibolites are compositionally similar to the basalts reported at Site 899 from this same region, based on trace and rare earth element contents. The Site 1068 amphibolites and metagabbros are similar to the Site 899 diabases but are more LREE enriched. However, the Sites 1067 and 1068 amphibolites and metagabbros are not compositionally similar to the Site 900 metagabbros, which are from the same structural high as the Leg 173 samples. The Leg 173 protoliths may be represented by basalts, diabases, and/or fine-grained gabbros that formed from incompatible trace element-enriched liquids.
Resumo:
Several bog manganese deposits were discovered in the Riding Mountain area in Manitoba during the spring and summer of 1940. A study was made of the known deposits to determine the grade of the occurrences, a possible source of the manganese oxides in the bog deposits and the possibilities of locating other manganese occurrences. Samples of the bog manganese, of spring waters from which the manganese oxides have apparently been precipitated, of the Odanah shale in which the deposits occur, and of "ironstone" nodules found in the Odanah and Riding Mountain shales were gathered in the field and later analyzed. In addition to chemical analyses of the above-mentioned samples, several polished sections of the manganese oxides were prepared and studied under the microscope, thin-sections of nodules were examined, and spectrographic analyses of both nodules and bog manganese were made. ...
Resumo:
Deep sea manganese nodules from the Southern Ocean have been studied using chemical analysis, X-ray diffraction, optical mineragraphic and electron probe microanalysis techniques. The nodules were lower in manganese, iron and associated elements than the average grade of manganese nodules from other localities. A number of chemical relationships have been observed. Nickel, copper, cobalt, barium, zinc, molybdenum, strontium, sulphur and phosphorus are associated with the manganese rich phases and titanium with the iron rich phases. X-ray diffraction analysis and electron probe microanalysis results indicate that the manganese phases are similar to the disordered delta-MnO2 and "manganite" phases reported by other workers.
Resumo:
Glauconites and phosphates have been detected in almost all investigated samples at Sites 798 (uppermost Miocene or lower Pliocene to Pleistocene) and 799 (early middle Miocene to Pleistocene). Autochthonous occurrences appear in very minor quantities (generally below 0.2%) throughout the drilled sequences, whereas allochthonous accumulations are limited to the lower Pliocene or uppermost Miocene sequence at Site 798 (glauconites) and to the upper and middle Miocene sequence at Site 799 (upper and middle Miocene: glauconites; middle Miocene: phosphates). X-ray fluorescence, microprobe, and bulk chemical analyses indicate high variabilities in cations and anions and generally low oxide totals. This is probably related to the substitution of phosphate and fluoride aniors by hydroxide and carbonate anions in phosphates and to the depletion of iron, aluminum, and potassium cations and the enrichment in hydroxide and crystal water in glauconites. Gradients in pore-water contents of dissolved phosphate and fluoride at Sites 798 and 799 suggest a depth of phosphate precipitation between 30 and 50 mbsf, with fluoride as the limiting element for phosphate precipitation at Site 798. Phosphate and fluoride appear to be balanced at Site 799. Crude extrapolations indicate that the Japan-Sea sediments may have taken up approximately 7.2*10**10 g P total/yr during the Neogene and Pleistocene. This amount corresponds to approximately 0.3% of the estimated present-day global transfer of phosphorus into the sediments and suggests that the Japan Sea constitutes an average sink for this element. The two main carriers of phosphorus into the present Japan Sea are the Tshushima and the Liman currents, importing approximately 6.6*10**10 g P and 5.7*10**10 g P per year, respectively. Bulk chemical analyses suggest that at least 36% of P total in the sediments is organically bound phosphorus. This rather high value, which corresponds to the measured Japan-Sea deep-water P organic/P total ratios, probably reflects rapid transport of organic phosphorus into the depth of the Japan Sea.
Resumo:
New petrographic and compositional data were reported for 143 samples of core recovered from Sites 832 and 833 during Ocean Drilling Program (ODP) Leg 134. Site 832 is located in the center and Site 833 is on the eastern edge of the North Aoba Basin, in the central part of the New Hebrides Island Arc. This basin is bounded on the east (Espiritu Santo and Malakula islands) and west (Pentecost and Maewo islands) by uplifted volcano-sedimentary ridges associated with collision of the d'Entrecasteaux Zone west of the arc. The currently active Central Belt volcanic front extends through the center of this basin and includes the shield volcanoes of Aoba, Ambrym, and Santa Maria islands. The oldest rocks recovered by drilling are the lithostratigraphic Unit VII Middle Miocene volcanic breccias in Hole 832B. Lava clasts are basaltic to andesitic, and the dominant phenocryst assemblage is plagioclase + augite + orthopyroxene + olivine. These clasts characteristically contain orthopyroxene, and show a low to medium K calc-alkaline differentiation trend. They are tentatively correlated with poorly documented Miocene calc-alkaline lavas and intrusives on adjacent Espiritu Santo Island, although this correlation demands that the measured K-Ar of 5.66 Ma for one clast is too young, due to alteration and Ar loss. Lava clasts in the Hole 832B Pliocene-Pleistocene sequence are mainly ankaramite or augite-rich basalt and basaltic andesite; two of the most evolved andesites have hornblende phenocrysts. These lavas vary from medium- to high-K compositions and are derived from a spectrum of parental magmas for which their LILE and HFSE contents show a broad inverse correlation with SiO2 contents. We hypothesize that this spectrum results from partial melting of an essentially similar mantle source, with the low-SiO2 high HFSE melts derived by lower degrees of partial melting probably at higher pressures than the high SiO2, low HFSE magmas. This same spectrum of compositions occurs on the adjacent Central Chain volcanoes of Aoba and Santa Maria, although the relatively high-HFSE series is known only from Aoba. Late Pliocene to Pleistocene lava breccias in Hole 833B contain volcanic clasts including ankaramite and augite + olivine + plagioclase-phyric basalt and rare hornblende andesite. These clasts are low-K compositions with flat REE patterns and have geochemical affinities quite different from those recovered from the central part of the basin (Hole 832B). Compositionally very similar lavas occur on Merelava volcano, 80 km north of Site 833, which sits on the edge of the juvenile Northern (Jean Charcot) Trough backarc basin that has been rifting the northern part of the New Hebrides Island Arc since 2-3 Ma. The basal sedimentary rocks in Hole 833B are intruded by a series of Middle Pliocene plagioclase + augite +/- olivine-phyric sills with characteristically high-K evolved basalt to andesite compositions, transitional to shoshonite. These are compositionally correlated with, though ~3 m.y. older than, the high-HFSE series described from Aoba. The calc-alkaline clasts in Unit VII of Hole 832B, correlated with similar lavas of Espiritu Santo Island further west, presumably were erupted before subduction polarity reversal perhaps 6-10 Ma. All other samples are younger than subduction reversal and were generated above the currently subduction slab. The preponderance in the North Aoba Basin and adjacent Central Chain islands of relatively high-K basaltic samples, some with transitional alkaline compositions, may reflect a response to collision of the d'Entrecasteaux Zone with the arc some 2-4 Ma. This may have modified the thermal structure of the subduction zone, driving magma generation processes to deeper levels than are present normally along the reminder of the New Hebrides Island Arc.
Resumo:
We present new major and trace element and O-Sr-Nd-isotope data for igneous rocks from the western Mediterranean Alborán Sea, collected during the METEOR 51/1 cruise, and for high-grade schists and gneisses from the continental Alborán basement, drilled during the Ocean Drilling Programme (ODP Leg 161, Site 976). The geochemical data allow a detailed examination of crustal and mantle processes involved in the petrogenesis of the lavas and for the first time reveal a zonation of the Miocene Alborán Sea volcanism: (1) a keel-shaped area of LREE-depleted (mainly tholeiitic series) lavas in the central Alborán Sea, generated by high degrees of partial melting of a depleted mantle source and involving hydrous fluids from subducted marine sediments, that is surrounded by (2) a horseshoe-shaped zone with LREE-enriched (mainly calc-alkaline series) lavas subparallel to the arcuate Betic-Gibraltar-Rif mountain belt. We propose that the geochemical zonation of the Miocene Alborán Basin volcanism results from eastward subduction of Tethys oceanic lithosphere coupled with increasing lithospheric thickness between the central Alborán Sea and the continental margins of Iberia and Africa.
Resumo:
Mid-ocean-ridge basalts recovered from Hole 1256D during Ocean Drilling Program Leg 206 exhibit the effects of various low-temperature (<100°C) alteration processes, including the formation of black or dark green alteration halos adjacent to celadonite-bearing veins. In several samples from the deepest basalts, a Ti-rich hydrogarnet occurs. To our knowledge, such a mineral has never been reported in the oceanic crust. This report presents a brief description and microprobe analyses of this hydrogarnet and associated celadonite. More detailed characterizations of this mineral and a description of its relationship to other secondary minerals will be undertaken in a future study, in an attempt to determine the mineral's formation conditions and its place in the general alteration history of the Hole 1256D basalts.