930 resultados para Dredge
(Table 2) Chemical compositions of olivines and orthopyroxenes from harzburgites of the Tonga Trench
Resumo:
A preliminary report on the manganese nodule field southwest of Western Australia published in this Journal recently (Frakes, Exon and Granath, 1977) quoted chemical analyses which were carried out on air-dried material. Significantly higher metal values have been recorded in some later analyses done on nodules dried at 105°C. Tests have shown that the ground, air-dried material retains considerable moisture, which accounts for the higher metal values of the later analyses. The average water content (after drying at 105°C) has been determined at 16 percent. The relevant chemical data now available on this material are summarised in the accompanying table: in this table metal values (by atomic absorption spectrophotometry) have been recalculated assuming a moisture content of 16 percent.
Resumo:
The 50 km-long West Valley segment of the northern Juan de Fuca Ridge is a young, extension-dominated spreading centre, with volcanic activity concentrated in its southern half. A suite of basalts dredged from the West Valley floor, the adjacent Heck Seamount chain, and a small near-axis cone here named Southwest Seamount, includes a spectrum of geochemical compositions ranging from highly depleted normal (N-) MORB to enriched (E-) MORB. Heck Seamount lavas have chondrite-normalized La/Sm en -0.3, 87Sr/86Sr = 0.70235 - 0.70242, and 206Pb/204Pb = 18.22 - 18.44, requiring a source which is highly depleted in trace elements both at the time of melt generation and over geologic time. The E-MORB from Southwest Seamount have La/Sm en -1.8, 87Sr/86Sr = 0.70245 - 0.70260, and 206Pb/204Pb = 18.73 - 19.15, indicating a more enriched source. Basalts from the West Valley floor have chemical compositions intermediate between these two end-members. As a group, West Valley basalts from a two-component mixing array in element-element and element-isotope plots which is best explained by magma mixing. Evidence for crustal-level magma mixing in some basalts includes mineral-melt chemical and isotopic disequilibrium, but mixing of melts at depth (within the mantle) may also occur. The mantle beneath the northern Juan de Fuca Ridge is modelled as a plum-pudding, with "plums" of enriched, amphibole-bearing peridotite floating in a depleted matrix (DM). Low degrees of melting preferentially melt the "plums", initially removing only the amphibole component and producing alkaline to transitional E-MORB. Higher degrees of melting tap both the "plums" and the depleted matrix to yield N-MORB. The subtly different isotopic compositions of the E-MORBs compared to the N-MORBs require that any enriched component in the upper mantle was derived from a depleted source. If the enriched component crystallized from fluids with a DM source, the "plums" could evolve to their more evolved isotopic composition after a period of 1.5-2.0 Ga. Alternatively, the enriched component could have formed recently from fluids with a lessdepleted source than DM, such as subducted oceanic crust. A third possibility is that enriched material might be dispersed as "plums" throughout the upper mantle, transported from depth by mantle plumes.
Resumo:
Paleotemperature curves were drawn from oxygen-isotope ratios in CaCO3 of planktonic foraminiferal tests and by the micropaleontological method using quantitative relationships of their species. Two series of curves yield similar results. These data confirm that isotope composition of oxygen reflects primarily temperature, and not isotope composition in ocean water. Temperature of the upper layer of ocean water increased from north to south both during the last two glaciations and in the interglacials. All three sediment cores collected from different latitudes show approximately the same amplitudes of fluctuation of mean annual temperature during times of their accumulation, as determined independently by different methods; these amplitudes are estimated as 5-7°C.
Resumo:
New data obtained in a shipboard laboratory are used to illustrate effect exerted by lithology of enclosing rock and by early diagenesis on residu¬al organic carbon content of Holocene deposits on the northwestern Bering Sea shelf. Loss of organic carbon is found to total 8-12% in the upper 10-15 cm of sediments and about 22% in the upper 1 m that agrees with data obtained for other areas by independent methods.
Resumo:
The monograph includes the study of chemical and mineral compositions of terrestrial and marine manganese ores, methods of their analysis, dependence of manganese crust geochemistry on tectonic position of their formation, problems of manganese genesis and sources of manganese in ocean ores in connection with geohistorical aspects of ocean formation and development. A hypothesis is offered that formation of giant manganese mineral basins on continental margins resulted from a large asteroid fall to the ocean.