710 resultados para Deep-sea chondrichthyans diversity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iron-manganese concretions, closely related to lacustrine ores and deep sea manganese nodules, are presently forming in different parts of Gulfs of Bothnia and Finland. They can be divided according to physical form into three distinct groups: (1) round pea-shaped concretions, (2) ring-shaped concrections, and (3) flat sheets and crusts of concretionary material. A definite correlation was found to exist between the form i.e. type of concretions and their chemical composition (Mn/Fe ratio). Trace element concentrations were generally rather high, although not as high as in deep sea manganese nodules. X-ray and DTA was used to study the mineralogy and crystal structure of the concretions. Surface concentrations and geographical distribution of the concretions were estimated on the basis of samples, diving observations and echo-grams.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Est Constanta 1986-1994 dataset contains zooplankton data collected allong a 5 station transect in front of the city Constanta (44°10'N, 28°41.5'E - EC1; 44°10'N, 28°47'E - EC2; 44°10'N, 28°54'E - EC3; 44°10'N, 29°08'E - EC4; 44°10'N, 29°22'E - EC5). Zooplankton sampling was undertaken at 5 stations where samples were collected using a Juday closing net in the 0-10, 10-25, 25-50m layer (depending also on the water masses). The dataset includes samples analysed for mesozooplankton species composition and abundance. Sampling volume was estimated by multiplying the mouth area with the wire length. Taxon-specific mesozooplankton abundance was count under microscope. Total abundance is the sum of the counted individuals. Total biomass Fodder, Rotifera , Ctenophora and Noctiluca was estimated using a tabel with wet weight for each species an stage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipid biomarker records from sinking particles collected by sediment traps are excellent tools to study the seasonality of biomarker production as well as processes of particle formation and settling, ultimately leading to the preservation of the biomarkers in sediments. Here we present records of the biomarker indices UK'37 based on alkenones and TEX86 based on isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs), both used for the reconstruction of sea surface temperatures (SST). These records were obtained from sinking particles collected using a sediment trap moored in the filamentous upwelling zone off Cape Blanc, Mauritania, at approximately 1300 water depth during a four-year time interval between 2003 and 2007. Mass and lipid fluxes are highest during peak upwelling periods between October and June. The alkenone and GDGT records both display pronounced seasonal variability. Sinking velocities calculated from the time lag between measured SST maxima and minima and corresponding index maxima and minima in the trap samples are higher for particles containing alkenones (14-59 m/d) than for GDGTs (9-17 m/d). It is suggested that GDGTs are predominantly exported from shallow waters by incorporation in opal-rich particles. SST estimates based on the UK'37 index faithfully record observed fluctuations in SST during the study period. Temperature estimates based on TEX86 show smaller seasonal amplitudes, which can be explained with either predominant production of GDGTs during the warm season, or a contribution of GDGTs exported from deep waters carrying GDGTs in a distribution that translates to a high TEX86 signal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discovered and investigated several cold-seep sites in four depth zones of the Sea of Okhotsk off Northeast Sakhalin: outer shelf (160-250 m), upper slope (250-450 m), intermediate slope (450-800 m), and Derugin Basin (1450-1600 m). Active seepage of free methane or methane-rich fluids was detected in each zone. However, seabed photography and sampling revealed that the number of chemoautotrophic species decreases dramatically with decreasing water depth. At greatest depths in the Derugin Basin, the seeps were inhabited by bacterial mats and bivalves of the families Vesicomyidae (Calyptogena aff. pacifica, C. rectimargo, Archivesica sp.), Solemyidae (Acharax sp.) and Thyasiridae (Conchocele bisecta). In addition, pogonophoran tubeworms of the family Sclerolinidae were found in barite edifices. At the shallowest sites, on the shelf at 160 m, the seeps lack chemoautotrophic macrofauna; their locations were indicated only by the patchy occurrence of bacterial mats. Typical seep-endemic metazoans with chemosynthetic symbionts were confined to seep sites at depths below 370 m. A comparative analysis of the structure of seep and background communities suggests that differences in predation pressure may be an important determinant of this pattern. The abundance of predators such as carnivorous brachyurans and asteroids, which can invade seeps from adjacent habitats and efficiently prey on sessile seep bivalves, decreased very pronouncedly with depth. We conclude from the obvious correlation with the conspicuous pattern in the distribution of seep assemblages that, on the shelf and at the upper slope, predator pressure may be high enough to effectively impede any successful settlement of viable populations of seep-endemic metazoans. However, there was also evidence that other depth-related factors, such as bottom-water current, sedimentary regimes, oxygen concentrations and the supply of suitable settling substrates, may additionally regulate the distribution of seep fauna in the area. As a consequence of the pronounced pattern in the distribution of seep communities, their ecological significance as food sources of surrounding background fauna increased with water depth. Isotopic analyses suggest that in the Derugin Basin seep colonists feed on chemoautotrophic seep organisms, either directly or by preying on metazoans with chemosynthetic symbionts. In contrast, seep organisms apparently do not contribute to the nutrition of the adjacent background fauna on the shelf and at the slope. In this area, elevated epifaunal abundances at seep sites were caused primarily by the availability of suitable settling substrates rather than by an enrichment of food supply.