968 resultados para Acanthocyclops sp., biomass as carbon


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early summer in the Arctic with extensive ice melt and break-up represents a dramatic change for sympagic-pelagic fauna below seasonal sea ice. As part of the International Polar Year-Circumpolar Flaw Lead system study (IPY-CFL), this investigation quantified zooplankton in the meltwater layer below landfast ice and remaining ice fauna below melting ice during June (2008) in Franklin Bay and Darnley Bay, Amundsen Gulf, Canada. The ice was in a state of advanced melt, with fully developed melt ponds. Intense melting resulted in a 0.3- to 0.5-m-thick meltwater layer below the ice, with a strong halocline to the Arctic water below. Zooplankton under the ice, in and below the meltwater layer, was sampled by SCUBA divers. Dense concentrations (max. 1,400 ind./m**3) of Calanus glacialis were associated with the meltwater layer, with dominant copepodid stages CIV and CV and high abundance of nauplii. Less abundant species included Pseudocalanus spp., Oithona similis and C. hyperboreus. The copepods were likely feeding on phytoplankton (0.5-2.3 mg Chl-a/m**3) in the meltwater layer. Ice amphipods were present at low abundance (<10 ind./m**2) and wet biomass (<0.2 g/m**2). Onisimus glacialis and Apherusa glacialis made up 64 and 51% of the total ice faunal abundance in Darnley Bay and Franklin Bay, respectively. During early summer, the autochthonous ice fauna becomes gradually replaced by allochthonous zooplankton, with an abundance boom near the meltwater layer. The ice amphipod bust occurs during late stages of melting and break-up, when their sympagic habitat is diminished then lost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particles of detritus were counted by size-groups and microplankton cells in samples stained with acid fuchsin and acridine orange. Data were obtained for eutrophic and oligotrophic waters. Seston in the eutrophic layer of eutrophic waters consists of 22-65% phytoplankton, 3-18% microzooplankton, and 32-65% detritus; in oligotrophic waters - of 3-7% phytoplankton, 1-5% microzooplankton, and 92-97% detritus. Amount of detritus in seston increases with depth up to 4.4 µg C/l (sigma = 1.48) at 500-4000 m. Microplankton biomass in deep water contains mostly olive-green cells and bacteria; no microzooplankton <200 µm long was found below 200 m. Aggregates 10-50 µm in diameter and fragments of organisms 50-200 µm long were dominant by weight among detrital particles. No discernible associations of microorganisms with detrital particles were observed.