539 resultados para oxygen-18
Resumo:
Seasonal depth stratified plankton tows, sediment traps and core tops taken from the same stations along a transect at 29°N off NW Africa are used to describe the seasonal succession, the depth habitats and the oxygen isotope ratios (delta18O(shell)) of five planktic foraminiferal species. Both the delta18O(shell) and shell concentration profiles show variations in seasonal depth habitats of individual species. None of the species maintain a specific habitat depth exclusively within the surface mixed layer (SML), within the thermocline, or beneath the thermocline. Globigerinoides ruber (white) and (pink) occur with moderate abundance throughout the year along the transect, with highest abundances in the winter and summer/fall season, respectively. The average delta18O(shell) of G. ruber (w) from surface sediments is similar to the delta18O(shell) values measured from the sediment-trap samples during winter. However, the delta18O(shell) of G. ruber (w) underestimates sea surface temperature (SST) by 2 °C in winter and by 4 °C during summer/fall indicating an extension of the calcification/depth habitat into colder thermocline waters. Globigerinoides ruber (p) continues to calcify below the SML as well, particularly in summer/fall when the chlorophyll maximum is found within the thermocline. Its vertical distribution results in delta18O(shell) values that underestimate SST by 2 °C. Shell fluxes of Globigerina bulloides are highest in summer/fall, where it lives and calcifies in association with the deep chlorophyll maximum found within the thermocline. Pulleniatina obliquiloculata and Globorotalia truncatulinoides, dwelling and calcifying a part of their lives in the winter SML, record winter thermocline (~180 m) and deep surface water (~350 m) temperatures, respectively. Our observations define the seasonal and vertical distribution of multiple species of foraminifera and the acquisition of their delta18O(shell).
Resumo:
Oxygen- and carbon-isotopic analyses have been performed on the benthic foraminifer Planulina wuellerstorfi in seven Late Quaternary cores from the Vema Channel-Rio Grande Rise region. The cores are distributed over the water-depth interval of 2340 to 3939 m, which includes the present transition from North Atlantic Deep Water (NADW) to Antarctic Bottom Water (AABW). The carbon-isotopic records in the cores vary as a function of water depth. The shallowest and deepest cores show no significant glacial-interglacial difference in delta13C. Four of the five cores presently located in the NADW have benthic foraminiferal delta13C that is lower during glacial isotopic stages. Based on bathymetric gradients in delta13C, we conclude that, like today, there were two water masses present in the Vema Channel during glacial intervals: a water mass enriched in 13C overlying another water mass depleted in 13C. The largest gradient of change of delta13C with depth, however, occurred at 2.7 km, ~1 km shallower than the present position of this gradient. On the basis of paleontologic and sedimentologic evidence, we consider it unlikely that the NADW:AABW transition shallowed to this level. Reduced carbon-isotopic gradients between the deep basins of the North Atlantic and Pacific Oceans during the last glaciation suggest that production of NADW was reduced. Lower production of NADW may have modified the local abyssal circulation pattern in the Vema Channel region.
Resumo:
Oxygen isotopic studies both of benthic formanifera (Emiliani, 1954, doi:10.1126/science.119.3103.853; Savin et al., 1975, doi:10.1130/0016-7606(1975)86<1499:TMP>2.0.CO;2; Shackleton and Kennett, 1975, doi:10.2973/dsdp.proc.29.117.1975; Savin, 1977, doi:10.1146/annurev.ea.05.050177.001535) and shallow-marine carbonates ( Dorman, 1966; Devereux, 1967; Buchart, 1978, doi:10.1038/275121a0) have provided a useful monitor of marine palaeotemperatures. The Deep Sea Drilling Project (DSDP) has provided cores from many ocean basins to conduct detailed stable isotopic and palaeoceanographic studies of the Cenozoic and late Mesozoic. DSDP Sites 277 and 292, separated by ~60° latitude in Palaeogene times, each record an 18O enrichment in benthic foraminifera of nearly 1 per mil beginning at the Eocene-Oligocene boundary. Planktonic foraminiferal trends are similar to benthic trends in the high latitude southwest Pacific Ocean, but tropical planktonics show only a minor (~0.3 per mil) increase which may reflect a change in seawater composition. These results suggest a sudden cooling of Pacific deep waters and high latitude surface waters forms a useful stratigraphic marker for the Eocene-Oligocene boundary. This boundary is particularly important because of its association with several worldwide palaeo-oceanographic and biogeographic changes. These include a sudden drop in the calcite compensation depth of 1-2 km (van Andel et al., 1975; van Andel, 1975, doi:10.1016/0012-821X(75)90086-2); a decrease in planktonic microfossil diversity (Lipps, 1970, 10.2307/2406711; Kennett, 1978, doi:10.1016/0377-8398(78)90017-8; Sancetta, 1979, doi:10.1016/0377-8398(79)90025-2); a change in planktonic biogeographic patterns (Kennett, 1978, doi:10.1016/0377-8398(78)90017-8; Sancetta, 1979, doi:10.1016/0377-8398(79)90025-2; Haq and Lohmann, 1976, doi:10.1016/0377-8398(76)90008-6); and increased erosion of deep-sea sediments over wide areas (Kennet et al., 1972; Moore et al., 1978).
Resumo:
The first anhydrite reported from oceanic basalts occurs in altered basalts drilled during DSDP Leg 70 from Hole 504B. Anhydrite has been identified in several samples, two of which were studied in detail. Anhydrite in Sample 504B-40-3 (130-135 cm), which was acquired at 310 meters sub-basement, occurs in a dolerite at the center of a vug rimmed by saponite and calcite. Red iron-hydroxide-rich alteration halos occur from 0 to 310 meters sub-basement; primary sulfides in these halos are oxidized, and the rocks have lost large amounts of sulfur. The anhydrite in this sample has a d34S value of 18.5 per mil, and it is interpreted to have formed from a fluid containing a mixture of seawater sulfate (20.9 per mil) and basaltic sulfur (0 per mil) released during the oxidation of primary sulfides. Anhydrite in Sample 504B-48-3 (14-18 cm), which was found at 376 meters sub-basement, occurs intergrown with gyrolite at the center of a 1-cm-wide vein that is rimmed by saponite and quartz. At sub-basement depths below 310 meters to the bottom of the Leg 70 section (562 m sub-basement), the rocks exhibit the effects of anoxic alteration with common secondary pyrite. Anhydrite in Sample 504B-48-3 (14-18 cm) has a d34S value of 36.7 per mil, and it is interpreted to have formed from seawater-derived fluids enriched in 34S through sulfate reduction. Temperatures of alteration calculated from oxygen isotope data range from 60 to 100°C. Sulfate reduction may have occurred in situ, or elsewhere at higher temperature, possibly deeper in the crust. The secondary mineral paragenetic sequence indicates a progressive decrease in Mg and increase in Ca in the circulating fluids. This eventually led to anhydrite formation late in the alteration process.
Resumo:
The glacial to interglacial delta13C records of the benthic foraminifera Cibicidoides wuellerstorfi and the Uvigerina peregrina group from deep-sea cores cannot be adjusted by a generally valid constant. The delta13C values of the U. peregrina group largely correlate with the accumulation rates of organic carbon, suggesting a local "habitat effect"; those of C. wuellerstorfi vary independently with respect to the carbon flux and record fluctuations in the delta13C of the ambient bottom water isotopic composition.
Resumo:
Site 723 is located in a water depth of 808 m at the center of the oxygen minimum zone and the middle part of the main thermocline on the Oman Margin. Oxygen isotope curves of planktonic delta18OP and benthic delta18OB can be traced back continuously to Stage 23 with high resolution measurements. A tentative correlation to Stage 53 has been tried using oxygen isotope stratigraphy. The amplitudes of the fluctuations of the benthic delta18OB curve are small, compared with the planktonic delta18OP curve. The delays of benthic oxygen isotopes delta18OB related to the planktonic delta18OP appear in the transgressive stages. Carbon isotopes of benthic delta13CB and planktonic delta13CP generally show an inverse correlation with oxygen isotope values delta18OB and delta18OB and delta18OP, however, the changes of delta13C are more gradual than those of delta18O during transgressive stages in spite of the synchronized changes of delta13C with those of delta18O during regressive stages. The difference of oxygen isotope between benthic and planktonic foraminifers represents the degree of pushing up the thermocline by upwelling, and the difference of carbon isotope represents the relative amount of upwelling Sigma[CO2] to the biological uptake in the surface water. These isotopic differences can be used as indicators of upwelling and show strong upwelling in the interglacial and weak upwelling in the glacial stages. The organic carbon content is correlated with the isotopic upwelling indicators, and higher content is correlated with the isotopic upwelling indicators and higher content appears in the interglacial stages. The calculated rate of sedimentation based on oxygen isotope stratigraphy in glacial stages is significantly high, two to four times that of interglacial stages, and the absolute flux of fluvial sediments with variability of lithofacies increased in the glacial stage. The present glacial-interglacial cycle with the fluctuation of upwelling relating to the southwest monsoon can be traced back to Stage 8, 250 ka. From Stage 8 to 12, 250-450 ka, the upwelling indicator of oxygen isotope difference did not show such distinct cyclicity. For Stages 12-15, 450-600 ka, the upwelling can be estimated as strong as in interglacial stage of the present cycles, with slightly weak upwelling in the glacial stage. This upwelling and climate can be traced back to the late Pliocene. The strongest upwelling can be estimated in the Pliocene-Pleistocene time by the isotopic indicators and the high organic carbon content.
Resumo:
Inoceramus occurs in every DSDP hole that penetrated Cretaceous sediments in the South Atlantic Ocean, and specimen occurrence has been mapped in detail for each core. Oxygen and carbon isotope measurements were completed on 18 Inoceramus specimens from Hole 530A. Textural evidence of diagenesis is accompanied by depletion in 18O. Paleotemperature results were obtained from 11 well-preserved specimens. Bottom water temperatures in the Angola Basin decreased from 23°C during the Coniacian to 13°C near the end of the Campanian.
Resumo:
The occurrence of mesoscale eddies that develop suboxic environments at shallow depth (about 40-100 m) has recently been reported for the eastern tropical North Atlantic (ETNA). Their hydrographic structure suggests that the water mass inside the eddy is well isolated from ambient waters supporting the development of severe near-surface oxygen deficits. So far, hydrographic and biogeochemical characterization of these eddies was limited to a few autonomous surveys, with the use of moorings, under water gliders and profiling floats. In this study we present results from the first dedicated biogeochemical survey of one of these eddies conducted in March 2014 near the Cape Verde Ocean Observatory (CVOO). During the survey the eddy core showed oxygen concentrations as low as 5 µmol kg-1 with a pH of around 7.6 at approximately 100 m depth. Correspondingly, the aragonite saturation level dropped to 1 at the same depth, thereby creating unfavorable conditions for calcifying organisms. To our knowledge, such enhanced acidity within near-surface waters has never been reported before for the open Atlantic Ocean. Vertical distributions of particulate organic matter and dissolved organic matter (POM and DOM), generally showed elevated concentrations in the surface mixed layer (0-70 m), with DOM also accumulating beneath the oxygen minimum. With the use of reference data from the upwelling region where these eddies are formed, the oxygen utilization rate was calculated by determining oxygen consumption through the remineralization of organic matter. Inside the core, we found these rates were almost 1 order of magnitude higher (apparent oxygen utilization rate (aOUR); 0.26 µmol kg-1 day-1) than typical values for the open North Atlantic. Computed downward fluxes for particulate organic carbon (POC), were around 0.19 to 0.23 g C m-2 day-1 at 100 m depth, clearly exceeding fluxes typical for an oligotrophic open-ocean setting. The observations support the view that the oxygen-depleted eddies can be viewed as isolated, westwards propagating upwelling systems of their own, thereby represent re-occurring alien biogeochemical environments in the ETNA.
Resumo:
To settle debate on the timing of sea level fluctuations during marine isotope stage (MIS) 3, we present records of d18O ruber (sea level proxy) and magnetic susceptibility from the same samples within the single sediment archive (i.e., "coregistered") of central Red Sea core GeoTü-KL11. Core-scanning X-ray fluorescence and environmental magnetic data establish the suitability of magnetic susceptibility as a proxy for eolian dust content in Red Sea sediments. The eolian dust data record similar variability as Greenland d18O ice during early to middle MIS 3, in agreement with previous observations that regional Arabian Sea climate fluctuated with a timing similar to that of Greenland climate variations. In contrast, the sea level record fluctuates with a timing similar to that of Antarctic-style climate variations. The coregistered nature of the two records in core KL11 unambiguously reveals a distinct offset in the phase relationship between sea level and eolian dust fluctuations. The results confirm that sea level rises, indicated by shifts in Red Sea d18O ruber to lighter values, occurred during cold episodes in Greenland during early to middle MIS 3. This indicates that the amplitudes of the reconstructed MIS 3 sea level fluctuations would not be reduced by inclusion of regional climate fluctuations in the Red Sea sea level method. Our analysis comprehensively supports our earlier conclusions of large-amplitude sea level variations during MIS 3 with a timing that is strongly similar to Antarctic-style climate variations.
Resumo:
Global warming is real and has been with us for at least two decades. Questions arise regarding the response of the ocean to greenhouse forcing, including expectations for changes in ocean circulation, in uptake of excess carbon dioxide, and in upwelling activity. The large climate variations of the ice ages, within the last million years, offer the opportunity to study responses of the ocean to climate change. A histogram of sealevel positions for the last 700,000 years (based on a new d/sup 18/O stratigraphy here compiled) shows that the present is near the margin of the range of fluctuations, with only 6 percent of positions indicating a warmer climate. Thus, the future will be largely outside of experience with regard to fluctuations of the recent geologic past. The same is true for greenhouse forcing. Our inability to explain sudden climate change in the past, including the rapid rise of carbon dioxide during deglaciation, and differences in ocean productivity between glacial and interglacial conditions, demonstrates a lack of understanding that makes predictions suspect. This is the lesson from ice age studies.