588 resultados para MANGANESE PHOSPHATES
Resumo:
Using spectrochemical techniques Fe, Si, Mg, Co, Ni, Cu, V, Mo, Ti and Tl have been estimated in nineteen manganese nodules, eight from the Atlantic ocean, seven from the Pacific ocean and four from the Indian ocean. Though data on more samples are required before firm and detailed conclusions can be made about the distribution of elements in manganese nodules, several distinct features appear when the data on the nineteen samples are examined. Certain elements appear to enrich more strongly than others. For example, relative to igneous rocks Mo is much more strongly enriched than V. For several elements (Ni, Cu and particularly Co and Tl) the degree of enrichment in two Fe-low nodules is far smaller than in the other nodules. The magnitude of dispersion of concentration appears to vary considerably for different elements; thus, whereas variation of concentration of V is relatively small, that of Ni, Cu, Co and Tl is far larger. The statistical nature of the distribution of Fe in manganese nodules appears to be characteristic and different from that of the other elements studied so far. Of the possible inter-element relationships examined that of Ni-Cu appears to be the most strongly developed.
Resumo:
Chemical and mineralogical analyses of manganese nodules from a large number of widely spaced localities in the Pacific and Indian Oceans have shown that their mineralogy and chemical composition varies both areally and with depth of formation. This is considered to result from a number of factors, important among which are: (a) their proximity to continental or volcanic sources of elements; (b) the chemical environment of deposition, including the degree of oxygenation; and (c) local factors such as the upward migration of reduced manganese in sediments from certain areas. Sub-surface nodules appear to share the chemical characteristics of their surface counterparts, especially those from volcanic areas where sub-surface sources of elements are probably important.
Resumo:
Geochemical barrier zones play an important role in determining various physical systems and characteristics of oceans, e.g. hydrodynamics, salinity, temperature and light. In the book each of more than 30 barrier zones are illustrated and defined by physical, chemical and biological parameters. Among the topics discussed are processes of inflow, transformation and precipitation of the sedimentary layer of the open oceans and more restricted areas such as the Baltic, Black and Mediterranean Seas.
Resumo:
Detailed mineralogical characterization of micronodules is given. The main regularities of variations in composition of micronodules from Central Pacific sedimentary rocks of different ages are revealed. New data on structure and structural features of manganese minerals are reported.
Resumo:
One the most interesting features of ocean sedimentation is the manganese formations on the surface of the ocean floor in some areas. These are especially widespread in the Pacific Ocean as concretions, grains, and crusts on rock fragments and bedrock outcrops. Iron-manganese concretions are the most abundant as they completely cover about 10% of the bottom of the Pacific Ocean where there are ore concentrations. The concretions occupy from 20-50% of the bottom and up to 80-90% on separate submarine rises. Such concretions are found in different types of bottom deposits, from abyssal red clays to terrigenous muds, but they occur most widely in red clays and quite often in carbonate muds. Their shape and their dimensions are very diverse and change from place to place, from station to station, varying from 0.5-20 cm. They may be oval, globular, reniform, or slaggy and often they are fiat or isometric concretions of an indefinite shape. The concretions generally have nuclei of pumice, basalt fragments, clayey and tuffaceous material, sharks' teeth, whale ossicles, and fossil sponges. Most concretions have concentric layers, combined with dendritic ramifications of iron and manganese oxides.
Resumo:
Mn, Fe, Ca, Co, Ni, Cu, Zn, Cd, Sn, Tl, Pb and Bi have been estimated in thirty-two nodules from the Pacific, Atlantic and Indian oceans. Various features about the composition of manganese nodules are discussed: element abundances, degrees of enrichment, inter-element relationships (notably between Ni and Cu, and between Zn and Cd), regional variations and some aspects of statistical distribution.
Resumo:
Investigations of piston cores from the Vema Channel and lower flanks of the Rio Grande Rise suggest the presence of episodic flow of deep and bottom water during the Late Pleistocene. Cores from below the present-day foraminiferal lysocline (at ~4000 m) contain an incomplete depositional record consisting of Mn nodules and encrustations, hemipelagic clay, displaced high-latitude diatoms, and poorly preserved heterogeneous microfossil assemblages. Cores from the depth range between 2900 m and 4000 m contain an essentially complete Late Pleistocene record, and consist of well-defined carbonate dissolution cycles with periodicities of ~100,000 years. Low carbonate content and increased dissolution correspond to glacial episodes, as interpreted by oxygen isotopic analysis of bulk foraminiferal assemblages. The absence of diagnostic high-latitude indicators (Antarctic diatoms) within the dissolution cyclss, however, suggests that AABW may not have extended to significantly shallower elevations on the lower flanks of the Rio Grande Rise during the Late Pleistocene. Therefore episodic AABW flow may not necessarily be the mechanism responsible for producing these cyclic events. This interpretation is also supported by the presence of an apparently complete Brunhes depositional record in the same cores, suggesting current velocities insufficient for significant erosion. Fluctuations in the properties and flow characteristics of another water mass, such as NADW, may be involved. The geologic evidence in core-top samples near the present-day AABW/NADW transition zone is consistent with either of two possible interpretations of the upper limit of AABW on the east flank of the channel. The foraminiferal lysocline, at ~4000 m, is near the top of the benthic thermocline and nepheloid layer, and may therefore correspond to the upper limit of relatively corrosive AABW. On the other hand, the carbonate compensation depth (CDD) at ~4250 m, which corresponds to the maximum gradient in the benthic thermocline, is characterized by rapid deposition of relatively fine-grained sediment. Such a zone of convergence and preferential sediment accumulation would be expected near the level of no motion in the AABW/NADW transition zone as a consequence of Ekman-layer veering of the mean velocity vector in the bottom boundary layer. It is possible that both of these interpretations are in part correct. The "level of no motion'' may in fact correspond to the CCD, while at the same time relatively corrosive water of Antarctic origin may mix with overlying NADW and therefore elevate the foraminifera] lysocline to depths above the level of no motion. Closely spaced observations of the hydrography and flow characteristics within the benthic thermocline will be required in order to use sediment parameters as more precise indicators of paleo-circulation.
Resumo:
A synoptic review of the studies of well-known occurrences of palagonite tuffs is presented. Included are palagonite tuffs from Iceland, and pillow-lava palagonite complexes from Columbia River basalts and from the central Oregon coast. Additional petrologic and x-ray defraction data for selected samples are presented. Petrologic evidence shows that basaltic glass of aqueous tuffs and breccias consists of sideromelane, which is susceptible to palagonitization. It is shown that palagonitization is a selective alteration process, involving hydration, oxidation and zeolitization. Some of the manganese nodules dredged from the Pacific Ocean floor contain nucleus of palagonite-tuff breccias or of zeolite. A brief megascopic and microscopic description of nodules from the south Pacific, the Mendocino ridge and the 'Horizon' Nodule from the north Pacific is presented. Petrographic studies of palagonite-tuff breccias of manganese nodules and other palagonites suggest that migration and segregation of metallic elements occur during and subsequent to palagonitization. During the palagonitization of sideromelane, nearly 30 percent of sea water is absorbed. The hydration of sideromelane is also accompanied by oxidation of iron and other elements. These oxides may be released either in colloidal form or in true solution and tend to precipitate first from the unstable palagonite.
Resumo:
Distribution of iron and manganese speciations in ocean sediments of a section from the coast of Japan to the open Pacific Ocean is under consideration. Determinations of total iron, as well as of reactive iron contents and of total manganese, as well as of Mn4+ contents have been done. Significant increase of total Fe content in sediments from the coast to the pelagic zone occurs without noticeable increase in reactive Fe content. Presence of layers of volcanic and terrigenous coarse clastic material in clayey sediments results to sharp change in iron content. Manganese content increases from near coastal to pelagic sediments more than 10 times; oxidation degree of sediments also increases. There are three types of bottom sediments different by contents of iron and manganese forms: reduced, oxidized (red clay), and transitional. Content of total Fe is almost does not change with depth in sediments, content of reactive Fe increases in reduced sediments, and decreases in oxidized ones. Manganese content in red clay mass increases several times.
Resumo:
The surface sediments in the Black Sea are underlain by extensive deposits of iron (Fe) oxide-rich lake sediments that were deposited prior to the inflow of marine Mediterranean Sea waters ca. 9000 years ago. The subsequent downward diffusion of marine sulfate into the methane-bearing lake sediments has led to a multitude of diagenetic reactions in the sulfate-methane transition zone (SMTZ), including anaerobic oxidation of methane (AOM) with sulfate. While the sedimentary cycles of sulfur (S), methane and Fe in the SMTZ have been extensively studied, relatively little is known about the diagenetic alterations of the sediment record occurring below the SMTZ. Here we combine detailed geochemical analyses of the sediment and pore water with multicomponent diagenetic modeling to study the diagenetic alterations below the SMTZ at two sites in the western Black Sea. We focus on the dynamics of Fe, S and phosphorus (P) and demonstrate that diagenesis has strongly overprinted the sedimentary burial records of these elements. Our results show that sulfate-mediated AOM substantially enhances the downward diffusive flux of sulfide into the deep limnic deposits. During this downward sulfidization, Fe oxides, Fe carbonates and Fe phosphates (e.g. vivianite) are converted to sulfide phases, leading to an enrichment in solid phase S and the release of phosphate to the pore water. Below the sulfidization front, high concentrations of dissolved ferrous Fe (Fe2+) lead to sequestration of downward diffusing phosphate as authigenic vivianite, resulting in a transient accumulation of total P directly below the sulfidization front. Our model results further demonstrate that downward migrating sulfide becomes partly re-oxidized to sulfate due to reactions with oxidized Fe minerals, fueling a cryptic S cycle and thus stimulating slow rates of sulfate-driven AOM (~ 1-100 pmol/cm**3/d) in the sulfate-depleted limnic deposits. However, this process is unlikely to explain the observed release of dissolved Fe2+ below the SMTZ. Instead, we suggest that besides organoclastic Fe oxide reduction, AOM coupled to the reduction of Fe oxides may also provide a possible mechanism for the high concentrations of Fe2+ in the pore water at depth. Our results reveal that methane plays a key role in the diagenetic alterations of Fe, S and P records in Black Sea sediments. The downward sulfidization into the limnic deposits is enhanced through sulfate-driven AOM with sulfate and AOM with Fe oxides may provide a deep source of dissolved Fe2+ that drives the sequestration of P in vivianite below the sulfidization front.
Chemical composition of a manganese nodule from the Tiki Basin, Touamotou Archipelago, Pacific Ocean
Resumo:
The text studies the deep-sea red clays in the East-Central Pacific ocean (Tahiti-Touamotou Archipelago), their authigenic formation, transport and diagenetic character in particular through their composition in REE.