741 resultados para Carbon dioxide in the Atlantic Ocean


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthonic foraminifera in late Pleistocene deep-sea cores show significant variation in delta 13C with depth in sediment. This, and the report by Sommer et al., (in prep) of delta 13C variations in planktonic foraminifera, indicate that the delta13C in dissolved oceanic CO2 undergoes a significant change in a few thousand years. This is in apparent contradiction to the estimated 300 ka residence time for carbon in the ocean. It is suggested that this is a consequence of changes in the terrestrial plant biomass, which has a delta13C of about -25?. Postulated changes in world vegetation, particularly in tropical rainforests during the Late Pleistocene, were sufficient to produce change of the magnitude observed. Rapid expansions of forests between 13 ka and 8 ka ago may have resulted in the striking accumulation of aragonite pteropods in Atlantic Ocean sediments of the age. Rapid deforestation during an interglacial-glacial transition probably caused the intense carbonate dissolution which is observed in Equatorial Pacific Ocean sediments deposited over this interbal. The current rate of injection of fossil fuel CO2 into the atmosphere is substantially greater than the rate at which it was added during post-interglacial aridification in the tropics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen isotope analyses of late Eocene and Oligocene planktonic foraminifers from low and middle latitude sites in the Atlantic Basin show that different species from the same samples can yield significantly different isotopic values. The range of isotopic values observed between species is greatest at low-latitudes and declines poleward. Many planktonic foraminifers exhibit a systematic isotopic ranking with respect to each other and can therefore be grouped on the basis of their isotopic ranking. The isotopic ranking of some taxa, however, appears to vary geographically and/or through time. Isotopic and paleontologic data from DSDP Site 522 indicate that commonly used isotopic temperature scales underestimate Oligocene sea surface temperatures. We suggest these temperature scales require revision to reflect the presence of Oligocene glaciation. Comparison of isotopic and paleontologic data from Sites 522, 511 and 277 suggests cold, low-salinity surface waters were present in high southern latitudes during the early Oligocene. Lowsalinity, high latitude surface waters could be caused by Eocene/Oligocene paleogeography or by the production of warm saline bottom water.