721 resultados para Bermuda Archipel
Resumo:
Ten ODP sites drilled in a depth transect (2164-4775 m water depth) during Leg 172 recovered high-deposition rate (>20 cm/kyr) sedimentary sections from sediment drifts in the western North Atlantic. For each site an age model covering the past 0.8-0.9 Ma has been developed. The time scales have a resolution of 10-20 kyr and are derived by tuning variations of estimated carbonate content to the orbital parameters precession and obliquity. Based on the similarity in the signature of proxy records and the spectral character of the time series, the sites are divided into two groups: precession cycles are better developed in carbonate records from a group of shallow sites (2164-2975 m water depth, Sites 1055-1058) while the deeper sites (2995-4775 m water depth, Sites 1060-1063) are characterized by higher spectral density in the obliquity band. The resulting time scales show excellent coherence with other dated carbonate and isotope records from low latitudes. Besides the typical Milankovitch cyclicity significant variance of the resulting carbonate time series is concentrated at millennial-scale changes with periods of about 12, 6, 4, 2.5, and 1.5 kyr. Comparisons of carbonate records from the Blake Bahama Outer Ridge and the Bermuda Rise reveal a remarkable similarity in the time and frequency domain indicating a basin-wide uniform sedimentation pattern during the last 0.9 Ma.
Resumo:
The combined use of grain size and magnetic fabric analyses provides the ability to discriminate among depositional environments in deep-sea terrigenous sediments. We analyzed samples from three different depositional settings: turbidites, pelagic or hemipelagic interlayers, and sediment drifts. Results indicate that sediment samples from these different environments can be distinguished from each other on the basis of their median grain size, sorting, as well as the intensity and shape of magnetic fabric as determined from an examination of the anisotropy of magnetic susceptibility. We use these discriminators to interpret downcore samples from the Bermuda Rise sediment drift. We find that the finer grains of the Bermuda Rise (relative to the Blake Outer Ridge) do not result from lower depositional energy (current speed) and so may reflect a difference in the nature of sediment being delivered to the site (i.e., distance from source) between the two locations.