591 resultados para Active layer depth
Resumo:
Results of measurements of Cs-137 and Co-60 concentrations in bottom sediments of the Northwestern Black Sea indicate inhomogenity of their distribution both over the studied area and along sediment cores. Intermittency of sediment layers with different concentration of radionuclides in the cores reflects active horizontal movements and redistribution of sediments on the shelf and continental slope. As a result sediment layers dated by the Chernobyl mark as seven years old were found in the 5-7 cm depth layer. Maximum Cs-137 concentration in the surface sedimentary layer on the shelf was 42 mBq/g. Maximum Co-60 concentration of 1320 mBq/g was measured due to a hot particle. No correlation was found between Cs-137 and the Co-60 contents.
Resumo:
Surface active substances (SAS) in the water column were measured by voltammetry using the electrochemical probe o-nitrophenol (ONP) during EIFEX, a mesoscale open ocean iron enrichment experiment in the Southern Ocean. SAS levels were low throughout the experiment (<0.005 - 0.03 mg/L Triton X-100 equivalents). Initially SAS was extremely low in the photic zone, but as the phytoplankton bloom developed concentrations markedly increased throughout the upper 100 m (~0.02 mg/L Triton X-100 equivalents). Highest concentrations of SAS (>0.02 mg/L Triton X-100 equivalents) were found at the end of the bloom particularly at density discontinuities where organic material may accumulate. Exudates from diatoms appeared to be the major source of SAS during EIFEX, either from direct extracellular release or in the action of being grazed upon by zooplankton.
Resumo:
Sulfide, S°, and thiosulfate were determined in waters of the Baltic Sea. Microquantities of these compounds were observed in oxic waters. Concentration levels of reduced sulfur compounds in Baltic oxic waters were very close to levels of the Black Sea oxic zone. Thiosulfate and S° were predominate compounds in oxic water whereas sulfide was a predominant compound Baltic waters high in hydrogen sulfide. Conclusion was made that during sedimentation in oxic waters anaerobic microorganisms along with aerobic bacteria take part in mineralization of organic matter. They exist on surfaces and in microniches of particles of organic detritus.
Resumo:
The work in this sub-project of ESOP focuses on the advective and convective transforma-tion of water masses in the Greenland Sea and its neighbouring areas. It includes observational work on the sub-mesoscale and analysis of hydrographic data up to the gyre-scale. Observations of active convective plumes were made with a towed chain equipped with up to 80 CTD sensors, giving a horizontal and vertical resolution of the hydrographic fields of a few metres. The observed scales of the penetrative convective plumes compare well with those given by theory. On the mesoscale the structure of homogeneous eddies formed as a result of deep convection was observed and the associated mixing and renewal of the intermediate layers quantified. The relative importance and efficiency of thermal and haline penetrative convection in relation to the surface boundary conditions (heat and salt fluxes and ice cover) and the ambient stratification are studied using the multi year time series of hydro-graphic data in the central Greenland Sea. The modification of the water column of the Greenland Sea gyre through advection from and mixing with water at its rim is assessed on longer time scales. The relative contributions are quantified using modern water mass analysis methods based on inverse techniques. Likewise the convective renewal and the spreading of the Arctic Intermediate Water from its formation area is quantified. The aim is to budget the heat and salt content of the water column, in particular of the low salinity surface layer, and to relate its seasonal and interannual variability to the lateral fluxes and the fluxes at the air-sea-ice interface. This will allow to estimate residence times for the different layers of the Greenland Sea gyre, a quantity important for the description of the Polar Ocean carbon cycle.