540 resultados para 63-472
Resumo:
Approaches to quantify the organic carbon accumulation on a global scale generally do not consider the small-scale variability of sedimentary and oceanographic boundary conditions along continental margins. In this study, we present a new approach to regionalize the total organic carbon (TOC) content in surface sediments (<5 cm sediment depth). It is based on a compilation of more than 5500 single measurements from various sources. Global TOC distribution was determined by the application of a combined qualitative and quantitative-geostatistical method. Overall, 33 benthic TOC-based provinces were defined and used to process the global distribution pattern of the TOC content in surface sediments in a 1°x1° grid resolution. Regional dependencies of data points within each single province are expressed by modeled semi-variograms. Measured and estimated TOC values show good correlation, emphasizing the reasonable applicability of the method. The accumulation of organic carbon in marine surface sediments is a key parameter in the control of mineralization processes and the material exchange between the sediment and the ocean water. Our approach will help to improve global budgets of nutrient and carbon cycles.
Resumo:
Fish stomach content records extracted from the DAPSTOM 4.5 database (held at the UK Centre for Environment, Fisheries and Aquaculture Science - CEFAS). Data collated as part of the EU Euro-Basin project and specifically concerning herring (Clupea harengus), mackerel (Scomber scombrus), blue whiting (Micromesistius poutassou), albacore (Thunnus alalunga) and bluefin tuna (Thunnus thynnus). The data set consist of 20720 records - collected throughout the northeast Atlantic, between 1906 and 2011 - mostly during routine fisheries monitoring research cruises.
Resumo:
The sediments of 14 box cores and 7 gravity cores, mainly taken directly in front of the Filchner(-Ronne) ice shelf northwest of Berkner Island (Weddell Sea), allowed to distinguish six sediment types. On the one hand,the retreat of the at first grounded and then floated ice from the last glacial maximum is documented. On the other hand,the sediments give an insight into extensive Holocene sediment deposition and remobilization northwest of Berkner Island. The ortho till was deposited directly by the grounded ice sheet and is lacking any marine influence. After floating of the ice shelf, partly very weIl stratified, partly unstratified, non-bioturbated paratill is deposited beneath the ice shelf. Lack of IRD-content in the paratill immediately above the orthotill indicates freezing at the bottom of the ice, at least for a short period after the ice became afloat. The orthotill and paratill contain small amounts of fragmented Tertiary diatoms, which allow the conclusion, that glacial-marine sediments in the accumulation area of the Ronne ice shelf will be eroded and later deposited by ice in the investigation area. Starting of bioturbation and therefore change in sedimentation from paratill to bioturbated paratill,is caused by the retreat of the ice shelf to its actual position. Isostatic uplift of the sea-bed after the Ice Age causes minor water depths with higher current velocities. The fine-fraction is eroding and mean particle-size will increase. Maybe, also isostatic uplift is responsible for repeated great advances of the floated ice shelf as shown in an erosional horizon in some cores containing bioturbated paratill. Postglacial sediment-thicknesses exceed 3 m. Assuming floating of the ice 15.000 YBP, accumulation rates reach nearly 20cm/lOOO years. Following the theories about sediment input in front of wide ice shelves, this was not expected. In the shallower water depths of Berkner Bank, the oscillations of the ice shelf are recorded in the sediments. Sorting and redistribution by high current velocities from beneath the ice up to the calving line, lead to the deposition of the weIl to very weIl sorted sandy till. In front of the calving line the finer fraction will settle down. Remobilization is possible by bioturbation and increasing current-velocity. According to the intensity of mixing of the sandy till with the fine fraction, modified till or muddy till results.
Resumo:
The composition and abundance of algal pigments provide information on phytoplankton community characteristics such as photoacclimation, overall biomass and taxonomic composition. In particular, pigments play a major role in photoprotection and in the light-driven part of photosynthesis. Most phytoplankton pigments can be measured by high-performance liquid chromatography (HPLC) techniques applied to filtered water samples. This method, as well as other laboratory analyses, is time consuming and therefore limits the number of samples that can be processed in a given time. In order to receive information on phytoplankton pigment composition with a higher temporal and spatial resolution, we have developed a method to assess pigment concentrations from continuous optical measurements. The method applies an empirical orthogonal function (EOF) analysis to remote-sensing reflectance data derived from ship-based hyperspectral underwater radiometry and from multispectral satellite data (using the Medium Resolution Imaging Spectrometer - MERIS - Polymer product developed by Steinmetz et al., 2011, doi:10.1364/OE.19.009783) measured in the Atlantic Ocean. Subsequently we developed multiple linear regression models with measured (collocated) pigment concentrations as the response variable and EOF loadings as predictor variables. The model results show that surface concentrations of a suite of pigments and pigment groups can be well predicted from the ship-based reflectance measurements, even when only a multispectral resolution is chosen (i.e., eight bands, similar to those used by MERIS). Based on the MERIS reflectance data, concentrations of total and monovinyl chlorophyll a and the groups of photoprotective and photosynthetic carotenoids can be predicted with high quality. As a demonstration of the utility of the approach, the fitted model based on satellite reflectance data as input was applied to 1 month of MERIS Polymer data to predict the concentration of those pigment groups for the whole eastern tropical Atlantic area. Bootstrapping explorations of cross-validation error indicate that the method can produce reliable predictions with relatively small data sets (e.g., < 50 collocated values of reflectance and pigment concentration). The method allows for the derivation of time series from continuous reflectance data of various pigment groups at various regions, which can be used to study variability and change of phytoplankton composition and photophysiology.
Resumo:
Low-temperature diagenetic reactions (less than 50°C) are held responsible for the generation of small amounts of C1-C8 hydrocarbons (less than 100 ng hydrocarbon/g dry weight of sediment) at outer continental shelf Deep Sea Drilling Project Sites 468 and 469 (sub-bottom depths 415 m and 454 m, respectively). In contrast, Site 471 shows an exponential rise in hydrocarbon yields at depths greater than 500 meters. The high yields of C4-C8 hydrocarbons (up to 30 ng hydrocarbon/g dry weight of sediment) in this area of high geothermal and volcanic activity suggest the penetration of an active petroleum-generating zone. Similar arguments apply to Site 467, where relatively high levels (up to 3 µg hydrocarbon/g dry weight sediment) occurred in very shallow (250-600 m) sediments.
Resumo:
Recent benthic foraminifera and their distribution in surface sediments were studied on a transect through the Peruvian oxygen minimum zone (OMZ) between 10 and 12°S. The OMZ with its steep gradients of oxygen concentrations allows to determine the oxygen-dependent changes of species compositions in a relatively small area. Our results from sediments of thirteen multicorer stations from 79 to 823 m water depth demonstrate that calcareous species, especially bolivinids dominate the assemblages throughout the OMZ. The depth distribution of several species matches distinct ranges of bottom water oxygen levels. The distribution pattern inferred a proxy which allows to estimate dissolved oxygen concentrations for reconstructing oxygen levels in the geological past.
Resumo:
Variations of global and regional silicate weathering rates and paleo-ocean circulation patterns are estimated by using radiogenic isotope records, but the effects of changes in provenance are generally ignored. Here sediment provenance has been constrained through the use of Ar-Ar ages for individual detrital minerals from the Labrador Sea, which can be compared directly to the radiogenic isotope compositions from the same core material. Dramatic changes in the radiogenic isotope composition of North Atlantic Deep Water through the Quaternary Period are shown to reflect discrete changes in both sources and weathering processes accompanying Northern Hemisphere glaciation. Changes in the different radiogenic isotope systems reflect the influence of source, physical weathering, and chemical weathering, and not simply changes in the underlying weathering rate or ocean circulation patterns that are typically inferred.
Resumo:
Twenty-one core samples from DSDP/IPOD Leg 63 were analyzed for products of chlorophyll diagenesis. In addition to the tetrapyrrole pigments, perylene and carotenoid pigments were isolated and identified. The 16 core samples from the San Miguel Gap site (467) and the five from the Baja California borderland location (471) afforded the unique opportunity of examining tetrapyrrole diagenesis in clay-rich marine sediments that are very high in total organic matter. The chelation reaction, whereby free-base porphyrins give rise to metalloporphyrins (viz., nickel), is well documented within the downhole sequence of sediments from the San Miguel Gap (Site 467). Recognition of unique arrays of highly dealkylated copper and nickel ETIO-porphyrins, exhibiting nearly identical carbonnumber homologies (viz., C-23 to C-30; mode = C-26), enabled subtraction of this component (thought to be derived from an allochthonous source) and thus permitted description of the actual in situ diagenesis of autochthonous chlorophyll derivatives.