544 resultados para 199-1221C


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicoflagellates ranging from middle Eocene to middle Miocene in age are present in Ocean Drilling Program Hole 1219A. The hole was drilled 250.8 meters below seafloor of which an ~120 m section primarily composed of nannofossil ooze with variable radiolarian and clay content is early Miocene and Oligocene in age, and a 95-m section is Eocene radiolarian and zeolithic clays, radiolarian and diatom oozes, and nannofossil oozes and chalks. A total of 150 samples were studied at a sample interval of one per section. Diversity of silicoflagellates is moderate, and the preservation is good. Abundance is generally low, with many samples barren of silicoflagellates, but 31 species and subspecies were identified. One new species, Naviculopsis trigeminus, is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the first high-resolution organic carbon mass accumulation rate (MAR) data set for the Eocene equatorial Pacific upwelling region, from Sites 1218 and 1219 of the Ocean Drilling Program. A maximum Corg MAR anomaly appears at 41 Ma and corresponds to a high carbonate accumulation event (CAE). Independent evidence suggests that this event (CAE-3) was a time of rapid cooling. Throughout the Eocene, organic carbon burial fluxes were an order of magnitude lower than fluxes recorded for the Holocene. In contrast, the expected organic carbon flux, calculated from the biogenic barium concentrations for these sites, is roughly equal to modern. A sedimentation anomaly appears at 41 Ma, when both the measured and the expected organic carbon MAR increases by a factor of two-three relative to the background Eocene fluxes. The rain of estimated Corg and barium from the euphotic zone to the sediments increased by factors of three and six, respectively. We suggest that the discrepancy between the expected and measured Corg in the sediments is a direct consequence of the increased metabolic rates of all organisms throughout the Eocene oceans and sediments. This hypothesis is supported by recent work in ecology and biochemical kinetics that recognizes the fundamental basis of ecology as following from the laws of thermodynamics. This dependence is now elucidated as the Universal Temperature Dependence (UTD) "law" of metabolism and can be applied to all organisms over their biologically relevant temperature range. The general pattern of organic carbon and barium deposition throughout the Eocene is consistent with the UTD theory. In particular, the anomaly at 41 Ma (CAE-3) is associated with rapid cooling, an event that triggered slower metabolic rates for all organisms, slower recycling of organic carbon in the water and sediment column, and, consequently, higher deposition of organic carbon in the sediments. This "metabolism-based" scenario is consistent with the sedimentation patterns we observe for both Sites 1218 and 1219.