534 resultados para 180-1115A
Resumo:
Modal analysis of middle Miocene to Pleistocene volcaniclastic sands and sandstones recovered from Sites 1108, 1109, 1118, 1112, 1115, 1116, and 1114 within the Woodlark Basin during Leg 180 of the Ocean Drilling Program indicates a complex source history for sand-sized detritus deposited within the basin. Volcaniclastic detritus (i.e., feldspar, ferromagnesian minerals, and volcanic rock fragments) varies substantially throughout the Woodlark Basin. Miocene sandstones of the inferred Trobriand forearc succession contain mafic and subordinate silicic volcanic grains, probably derived from the contemporary Trobriand arc. During the late Miocene, the Trobriand outerarc/forearc (including Paleogene ophiolitic rocks) was subaerially exposed and eroded, yielding sandstones of dominantly mafic composition. Rift-related extension during the late Miocene-late Pliocene led to a transition from terrestrial to neritic and finally bathyal deposition. The sandstones deposited during this period are composed dominantly of silicic volcanic detritus, probably derived from the Amphlett Islands and surrounding areas where volcanic rocks of Pliocene-Pleistocene age occur. During this time terrigenous and metamorphic detritus derived from the Papua New Guinea mainland reached the single turbiditic Woodlark rift basin (or several subbasins) as fine-grained sediments. At Sites 1108, 1109, 1118, 1116, and 1114, serpentinite and metamorphic grains (schist and gneiss) appear as detritus in sandstones younger than ~3 Ma. This is thought to reflect a major pulse of rifting that resulted in the deepening of the Woodlark rift basin and the prevention of terrigenous and metamorphic detritus from reaching the northern rift margin (Site 1115). The Paleogene Papuan ophiolite belt and the Owen Stanley metamorphics were unroofed as the southern margin of the rift was exhumed (e.g., Moresby Seamount) and, in places, subaerially exposed (e.g., D'Entrecasteaux Islands and onshore Cape Vogel Basin), resulting in new and more proximal sources of metamorphic, igneous, and ophiolitic detritus. Continued emergence of the Moresby Seamount during the late Pliocene-early Pleistocene bounded by a major inclined fault scarp yielded talus deposits of similar composition to the above sandstones. Upper Pliocene-Pleistocene sandstones were deposited at bathyal depths by turbidity currents and as subordinate air-fall ash. Silicic glassy (high-K calc-alkaline) volcanic fragments, probably derived from volcanic centers located in Dawson and Moresby Straits, dominated these sandstones.
Resumo:
The cores described were taken by the personnel of the Lamont-Doherty Earth Observatory (LDEO) operating as guests scientists during the R/V Atlantis Cruise 180 undertaken by the Woods Hole Oceanographic Institution from July until October 1952. A total of 118 cores were recovered and are available at Lamont-Doherty Earth Observatory for sampling and study.
Resumo:
During the last 8 m.y. the Papuan Peninsula region of Papua New Guinea has been affected by extension which opened the Woodlark Basin. The present-day spreading tip is located at the foot of the Moresby Seamount, a crustal block whose northern flank is an active low-angle normal fault related to this extension. During Ocean Drilling Program Leg 180 (7 June-11 August 1998), 11 sites (1108-1118) were drilled along a north-south-trending transect across the Woodlark Basin just ahead of the spreading tip. Four of these sites (1118, 1109, 1114, and 1117) reached the crystalline basement, which is composed of diabase and gabbro. Sites 1118 and 1109, located on the Woodlark Rise, belong to the hanging wall block, and Sites 1114 and 1117, located on the crest of the Moresby Seamount, belong to the footwall block and the fault zone itself. Most of the basalt, diabase, and gabbro that were recovered show a well-preserved magmatic texture. The diabase, which is the most abundant rock type, has a coarse-grained ophitic texture composed of poikilitic clinopyroxene including radiating, locally skeletal plagioclase laths with interstitial iron oxide grains. Secondary mineralogy consists of chlorite, zeolite, calcite, albite, and quartz. The gabbro shows a medium-grained granular texture. The magmatic mineralogy consists of euhedral laths of plagioclase and anhedral interstitial clinopyroxene. Secondary mineralogy consists of a magnesio to actinolitic hornblende, chlorite, clinozoisite, zeolite, quartz, and calcite. The retrograde metamorphic evolution of both gabbro and diabase occurred under low amphibolite to subgreenschist facies conditions associated mainly with brittle deformation and the development of a local low-temperature shear zone. This shows no evidence for high thermal gradient in the crust during the continental rifting.
Resumo:
During Ocean Drilling Program (ODP) Leg 180, 11 sites were drilled in the vicinity of the Moresby Seamount to study processes associated with the transition from continental rifting to seafloor spreading in the Woodlark Basin. This paper presents thermochronologic (40Ar/39Ar, 238U/206Pb, and fission track) results from igneous rocks recovered during ODP Leg 180 that help constrain the latest Cretaceous to present-day tectonic development of the Woodlark Basin. Igneous rocks recovered (primarily from Sites 1109, 1114, 1117, and 1118) consist of predominantly diabase and metadiabase, with minor basalt and gabbro. Zircon ion microprobe analyses gave a 238U/206Pb age of 66.4 ± 1.5 Ma, interpreted to date crystallization of the diabase. 40Ar/39Ar plagioclase apparent ages vary considerably according to the degree to which the diabase was altered subsequent to crystallization. The least altered sample (from Site 1109) yielded a plagioclase isochron age of 58.9 ± 5.8 Ma, interpreted to represent cooling following intrusion. The most altered sample (from Site 1117) yielded an isochron age of 31.0 ± 0.9 Ma, interpreted to represent a maximum age for the timing of subsequent hydrothermal alteration. The diabase has not been thermally affected by Miocene-Pliocene rift-related events, supporting our inference that these rocks have remained at shallow and cool levels in the crust (i.e., upper plate) since they were partially reset as a result of middle Oligocene hydrothermal alteration. These results suggest that crustal extension in the vicinity of the Moresby Seamount, immediately west of the active seafloor spreading tip, is being accommodated by normal faulting within latest Cretaceous to early Paleocene oceanic crust. Felsic clasts provide additional evidence for middle Miocene and Pliocene magmatic events in the region. Two rhyolitic clasts (from Sites 1110 and 1111) gave zircon 238U/206Pb ages of 15.7 ± 0.4 Ma and provide evidence for Miocene volcanism in the region. 40Ar/39Ar total fusion ages on single grains of K-feldspar from these clasts yielded younger apparent ages of 12.5 ± 0.2 and 14.4 ± 0.6 Ma due to variable sericitization of K-feldspar phenocrysts. 238U/206Pb zircon, 40Ar/39Ar K-feldspar and biotite total fusion, and apatite fission track analysis of a microgranite clast (from Site 1108) provide evidence for the existence of a rapidly cooled 3.0 to 1.8 Ma granitic protolith. The clast may have been transported longitudinally from the west (e.g., from the D'Entrecasteaux Islands). Alternatively, it may have been derived from a more proximal, but presently unknown, source in the vicinity of the Moresby Seamount.
Resumo:
Cores from the 11 sites drilled during Leg 180 showed radiolarian assemblages that appear only in the Quaternary sediments. The most diverse and well-preserved assemblages were found in hemipelagic sediments from Holes 1108A, 1110A, and 1115B.